Free-Electron Transparent Metasurfaces with Controllable Losses for Broadband Light Manipulation with Nanometer Resolution

Marcella Bonifazi, Valerio Mazzone, Ning Li, Yi Tian, Andrea Fratalocchi

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Controlling broadband light in nanoscale volumes is a desired goal in nanophotonics. Metastructures tackle this problem by subwavelength nanostructured patterns. The current technology reaches footprints of 50 nm with plasmonic nanostructures. Scaling down these values is challenging, especially in low loss dielectrics. Here, a new class of metasurfaces is introduced, “printed” point-to-point by free-electron waves and created by altering the resonant atomic transition of inexpensive photosensitive materials. With this approach it is possible to directly write a desired distribution of refractive index and extinction coefficient with a resolution equal to the focusing accuracy of the electron beam, theoretically limited to the single nanometer. An application of this technology is illustrated in structural coloration. Currently, the best results are obtained with plasmonics at 127 000 dual polarization interferometry (DPI), with 50–200 nm structures and chromaticity ranging from blue to yellow. Free-electron metasurfaces can generate the complete spectrum of colors of the cyan, yellow, magenta, and black system with resolutions up to 256 000 DPI, and nanostructures of 10 nm radius by using a single inexpensive layer of transparent material. This platform can enable a new generation of low cost transparent media supporting ultradense optical circuitry for broadband light control.
Original languageEnglish (US)
Pages (from-to)1900849
JournalAdvanced Optical Materials
Volume8
Issue number1
DOIs
StatePublished - Nov 20 2019

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): OSR-2016-CRG5-2995
Acknowledgements: M.B. and V.M. contributed equally to this work. This research acknowledges funding from KAUST (Award OSR-2016-CRG5-2995).

Fingerprint

Dive into the research topics of 'Free-Electron Transparent Metasurfaces with Controllable Losses for Broadband Light Manipulation with Nanometer Resolution'. Together they form a unique fingerprint.

Cite this