Abstract
Although the detection of methylated cell free DNA represents one of the most promising approaches for relapse risk assessment in cancer patients, the low concentration of cell-free circulating DNA constitutes the biggest obstacle in the development of DNA methylation-based biomarkers from blood. This paper describes a method for the measurement of genomic methylation content directly on circulating tumor cells (CTC), which could be used to deceive the aforementioned problem. Since CTC are disease related blood-based biomarkers, they result essential to monitor tumor's stadiation, therapy, and early relapsing lesions. Within surface's bio-functionalization and cell's isolation procedure standardization, the presented approach reveals a singular ability to detect high 5-methylcytosine CTC-subset content in the whole CTC compound, by choosing folic acid (FA) as transducer molecule. Sensitivity and specificity, calculated for FA functionalized surface (FA-surface), result respectively on about 83% and 60%. FA-surface, allowing the detection and characterization of early metastatic dissemination, provides a unique advance in the comprehension of tumors progression and dissemination confirming the presence of CTC and its association with high risk of relapse. This functionalized surface identifying and quantifying high 5-methylcytosine CTC-subset content into the patient's blood lead significant progress in cancer risk assessment, also providing a novel therapeutic strategy.© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Original language | English (US) |
---|---|
Pages (from-to) | n/a-n/a |
Number of pages | 1 |
Journal | Small |
Volume | 10 |
Issue number | 21 |
DOIs | |
State | Published - Jul 14 2014 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledgements: This work was partially supported by the Grants from the PON "Nuove strategie nanotecnologiche per la messa a punto di farmaci e presidi diagnostici diretti verso cellule cancerose circolanti" project (code: PON01_02782), the Interregional Research Centre for Food Safety & Health (IRC_FSC) project (cod. PON a3-00359) granted to the Department of Health Science of the University Magna Graecia of Catanzaro, the FIRB "Rete Nazionale di Ricerca sulle Nanoscienze ItalNanoNet" project (cod. RBPR05JH2P_010, CUP B41J09000110005) granted to the nanotechnology laboratory of the Department of Experimental Medicine of the University of Magna Graecia of Catanzaro and the "Fondo Sociale Europeo - POR Calabria FSE 2007/2013" Program. The authors thank R. Giammaria for revising the English text.
ASJC Scopus subject areas
- General Medicine