Abstract
The recent boom in human-machine interaction has triggered a significant demand for flexible and transparent ionotronics. State-of-the-art ion conductors are built by embedding electrolytes in a transparent gel polymer to form an ion-conducting composite, named ion conductive hydrogels or ionogels. Herein, we demonstrate an intrinsic ion-conducting membrane with ultrahigh ion conductivity, flexibility and transparency based on two-dimensional nanoclays of intrinsic conductivity (NICs). The inherently charged and ordered laminar microstructure exhibits an ultrahigh ion conductivity of 0.45 S cm-1 at 80 °C without external electrolytes, which is 100-1000 times higher than that of state-of-the-art ion-conducting composites. The NICs membranes also exhibit superior stability against harsh conditions including organic solvents, high temperature and prolonged dehydration-hydration cycles. We further demonstrate a NICs touch panel that can realize real-time, human-machine communication by drawing and typing. The nanoclays with intrinsic conductivity may open an avenue to electrolyte-free transparent and flexible ionotronics.
Original language | English (US) |
---|---|
Pages (from-to) | 25657-25664 |
Number of pages | 8 |
Journal | JOURNAL OF MATERIALS CHEMISTRY A |
Volume | 7 |
Issue number | 44 |
DOIs | |
State | Published - Jan 1 2019 |
Externally published | Yes |