FishNet: A Large-scale Dataset and Benchmark for Fish Recognition, Detection, and Functional Trait Prediction

Faizan Farooq Khan*, Xiang Li, Andrew J. Temple, Mohamed Elhoseiny

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

15 Scopus citations

Abstract

Aquatic species are essential components of the world's ecosystem, and the preservation of aquatic biodiversity is crucial for maintaining proper ecosystem functioning. Unfortunately, increasing anthropogenic pressures such as overfishing, climate change, and coastal development pose significant threats to aquatic biodiversity. To address this challenge, it is necessary to design an automatic aquatic species monitoring systems that can help researchers and policymakers better understand changes in aquatic ecosystems and take appropriate actions to preserve biodiversity. However, the development of such systems is impeded by a lack of large-scale diverse aquatic species datasets. Existing aquatic species recognition datasets generally have a limited number of species, nor do they provide functional trait data, and so have only narrow potential for application. To address the need for generalized systems that can recognize, locate, and predict a wide array of species and their functional traits, we present FishNet, a large-scale diverse dataset containing 94,532 meticulously organized images from 17,357 aquatic species, organized according to aquatic biological taxonomy (order, family, genus, and species). We further build three benchmarks, i.e., fish classification, fish detection, and functional trait prediction, inspired by ecological research needs, to facilitate the development of aquatic species recognition systems, and promote further research in the field of aquatic ecology. Our FishNet dataset has the potential to encourage the development of more accurate and effective tools for the monitoring and protection of aquatic ecosystems, and hence take effective action toward the conservation of our planet's aquatic biodiversity. Our dataset and code will be released at https://fishnet-2023.github.io/.

Original languageEnglish (US)
Title of host publicationProceedings - 2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages20439-20449
Number of pages11
ISBN (Electronic)9798350307184
DOIs
StatePublished - 2023
Event2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023 - Paris, France
Duration: Oct 2 2023Oct 6 2023

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
ISSN (Print)1550-5499

Conference

Conference2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
Country/TerritoryFrance
CityParis
Period10/2/2310/6/23

Bibliographical note

Publisher Copyright:
© 2023 IEEE.

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'FishNet: A Large-scale Dataset and Benchmark for Fish Recognition, Detection, and Functional Trait Prediction'. Together they form a unique fingerprint.

Cite this