First aromatic ring formation by the radical-chain reaction of vinylacetylene and propargyl

Hanfeng Jin, Lili Xing, Dapeng Liu, Junyu Hao, Jiuzhong Yang, Aamir Farooq

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

Recent investigations illustrated that clustering of hydrocarbons by radical-chain reaction (CHRCR) mechanism provides key mechanistic steps for the rapid synthesis of polycyclic aromatic hydrocarbons (PAHs) and soot. Resonance-stabilized radicals (RSRs) play critical roles in this mechanism, and non-benzene first-ring species have attracted considerable attention as precursors of larger aromatic hydrocarbons. C7H7 RSRs, such as benzyl, tropyl, vinyl-cyclopentadienyl, are particularly stable and are thus quite important in the growth of PAHs. The addition of vinylacetylene to propargyl radical, a prototypical CHRCR reaction, provides a facile route to C7H7 RSRs. We have directly investigated the reaction of propargyl and vinylacetylene in isomer-resolved elementary experiments by synchrotron vacuum ultra-violet photoionization molecular beam mass spectrometry (SVUV-PI-MBMS). In good agreement with theoretical predictions, vinyl-cyclopentadienyl is found to be the major product of vinylacetylene and propargyl reaction while benzyl is minor. This work demonstrates a feasible CHRCR pathway, not proceeding through benzene, for PAH formation.
Original languageEnglish (US)
Pages (from-to)524-534
Number of pages11
JournalCombustion and Flame
Volume225
DOIs
StatePublished - Dec 1 2020

Bibliographical note

KAUST Repository Item: Exported on 2020-12-16
Acknowledgements: This research was funded by the Office of Sponsored Research at King Abdullah University of Science and Technology (KAUST), and by Chinese Universities Scientific Fund, WK2310000069. Quantum calculations in this study is supported by KAUST Supercomputing Laboratory.

Fingerprint

Dive into the research topics of 'First aromatic ring formation by the radical-chain reaction of vinylacetylene and propargyl'. Together they form a unique fingerprint.

Cite this