Abstract
Atomic-scale ferroelectrics are of great interest for high-density electronics, particularly field-effect transistors, low-power logic, and nonvolatile memories. We devised a film with a layered structure of bismuth oxide that can stabilize the ferroelectric state down to 1 nanometer through samarium bondage. This film can be grown on a variety of substrates with a cost-effective chemical solution deposition. We observed a standard ferroelectric hysteresis loop down to a thickness of ~1 nanometer. The thin films with thicknesses that range from 1 to 4.56 nanometers possess a relatively large remanent polarization from 17 to 50 microcoulombs per square centimeter. We verified the structure with first-principles calculations, which also pointed to the material being a lone pair–driven ferroelectric material. The structure design of the ultrathin ferroelectric films has great potential for the manufacturing of atomic-scale electronic devices.
Original language | English (US) |
---|---|
Pages (from-to) | 1218-1224 |
Number of pages | 7 |
Journal | Science |
Volume | 379 |
Issue number | 6638 |
DOIs | |
State | Published - Mar 24 2023 |
Bibliographical note
KAUST Repository Item: Exported on 2023-03-27Acknowledgements: This work was supported by the National Key Research and Development Program of China (2018YFA0703700, 2017YFE0119700, and 2020YFA0406202), the National Natural Science Foundation of China (21801013, 51774034, 51961135107, 62104140, 12175235, 22090042, 12074016, 11704041, and 12274009), the Fundamental Research Funds for the Central Universities (FRF-IDRY-19-007 and FRF-TP-19-055A2Z), the National Program for Support of Top-notch Young Professionals, the Young Elite Scientists Sponsorship Program by CAST (2019-2021QNRC), and Lingang Laboratory Open Research Fund (grant LG-QS-202202-11). Use of the Beijing Synchrotron Radiation Facility (1W1A beamlines, China) of the Chinese Academy of Sciences is acknowledged. Y.-W.F. acknowledges the support of Masaki Azuma’s group during his stay at the Tokyo Institute of Technology. Y.L. acknowledges the support of the Beijing Innovation Team Building Program (grant no. IDHT20190503), the Beijing Natural Science Foundation (Z210016), the Research and Development Project from the Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering (2022SX-TD001), and the General Program of Science and Technology Development Project of Beijing Municipal Education Commission (KM202110005003).
ASJC Scopus subject areas
- General