FEDP3: FEDERATED PERSONALIZED AND PRIVACY-FRIENDLY NETWORK PRUNING UNDER MODEL HETEROGENEITY

Kai Yi*, Nidham Gazagnadou, Peter Richtárik, Lingjuan Lyu

*Corresponding author for this work

Research output: Contribution to conferencePaperpeer-review

Abstract

The interest in federated learning has surged in recent research due to its unique ability to train a global model using privacy-secured information held locally on each client. This paper pays particular attention to the issue of client-side model heterogeneity, a pervasive challenge in the practical implementation of FL that escalates its complexity. Assuming a scenario where each client possesses varied memory storage, processing capabilities and network bandwidth - a phenomenon referred to as system heterogeneity - there is a pressing need to customize a unique model for each client. In response to this, we present an effective and adaptable federated framework FedP3, representing Federated Personalized and Privacy-friendly network Pruning, tailored for model heterogeneity scenarios. Our proposed methodology can incorporate and adapt well-established techniques to its specific instances. We offer a theoretical interpretation of FedP3 and its locally differential-private variant, DP-FedP3, and theoretically validate their efficiencies.

Original languageEnglish (US)
StatePublished - 2024
Event12th International Conference on Learning Representations, ICLR 2024 - Hybrid, Vienna, Austria
Duration: May 7 2024May 11 2024

Conference

Conference12th International Conference on Learning Representations, ICLR 2024
Country/TerritoryAustria
CityHybrid, Vienna
Period05/7/2405/11/24

Bibliographical note

Publisher Copyright:
© 2024 12th International Conference on Learning Representations, ICLR 2024. All rights reserved.

ASJC Scopus subject areas

  • Language and Linguistics
  • Computer Science Applications
  • Education
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'FEDP3: FEDERATED PERSONALIZED AND PRIVACY-FRIENDLY NETWORK PRUNING UNDER MODEL HETEROGENEITY'. Together they form a unique fingerprint.

Cite this