FAITHFUL VISION-LANGUAGE INTERPRETATION VIA CONCEPT BOTTLENECK MODELS

Songning Lai, Lijie Hu*, Junxiao Wang, Laure Berti-Equille, Di Wang*

*Corresponding author for this work

Research output: Contribution to conferencePaperpeer-review

1 Scopus citations

Abstract

The demand for transparency in healthcare and finance has led to interpretable machine learning (IML) models, notably the concept bottleneck models (CBMs), valued for their potential in performance and insights into deep neural networks. However, CBM's reliance on manually annotated data poses challenges. Label-free CBMs have emerged to address this, but they remain unstable, affecting their faithfulness as explanatory tools. To address this issue of inherent instability, we introduce a formal definition for an alternative concept called the Faithful Vision-Language Concept (FVLC) model. We present a methodology for constructing an FVLC that satisfies four critical properties. Our extensive experiments on four benchmark datasets using Label-free CBM model architectures demonstrate that our FVLC outperforms other baselines regarding stability against input and concept set perturbations. Our approach incurs minimal accuracy degradation compared to the vanilla CBM, making it a promising solution for reliable and faithful model interpretation.

Original languageEnglish (US)
StatePublished - 2024
Event12th International Conference on Learning Representations, ICLR 2024 - Hybrid, Vienna, Austria
Duration: May 7 2024May 11 2024

Conference

Conference12th International Conference on Learning Representations, ICLR 2024
Country/TerritoryAustria
CityHybrid, Vienna
Period05/7/2405/11/24

Bibliographical note

Publisher Copyright:
© 2024 12th International Conference on Learning Representations, ICLR 2024. All rights reserved.

ASJC Scopus subject areas

  • Language and Linguistics
  • Computer Science Applications
  • Education
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'FAITHFUL VISION-LANGUAGE INTERPRETATION VIA CONCEPT BOTTLENECK MODELS'. Together they form a unique fingerprint.

Cite this