Abstract
Alkali metal carboxylates, including sodium acetate, sodium benzoate, and sodium sorbate, which are all readily available and widely used as food additives, were found to promote the ring-opening polymerization (ROP) of trimethylene carbonate (TMC) to produce poly(trimethylene carbonate) (PTMC). The sodium acetate-catalyzed ROP of TMC proceeded in the presence of an alcohol initiator under solvent-free conditions at 70 °C, even at very low catalyst loadings of 0.01–0.0001 mol%. The controlled nature of this ROP system enabled the synthesis of PTMCs with predicted molecular weights ranging from 2400 to 11 700 g mol−1 and narrow dispersities (~1.23). Importantly, ROP is initiated by an alcohol initiator, allowing PTMC production with desired functional groups, such as azido, alkyne, and methacrylate groups, at the α-chain end. Furthermore, the poly(L-lactic acid)-b-PTMC-b-poly(L-lactic acid) triblock copolymer, a biodegradable thermoplastic elastomer, was successfully synthesized in one pot via the sodium acetate-catalyzed ring-opening block copolymerization of TMC and L-lactide with a 1,3-propanediol initiator.
Original language | English (US) |
---|---|
Pages (from-to) | 103-110 |
Number of pages | 8 |
Journal | Polymer Journal |
Volume | 52 |
Issue number | 1 |
DOIs | |
State | Published - Sep 24 2019 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledgements: This work was financially supported by the JSPS KAKENHI (Grant Number JP18H04639) (Hybrid Catalysis for Enabling Molecular Synthesis on Demand), Frontier Chemistry Center (Hokkaido University), Inamori Foundation, and Grant-in-Aid for JSPS Research Fellows. TS gratefully acknowledges the JSPS Fellowship for Young Scientists. VL, PB, and NH gratefully acknowledge the support of King Abdullah University of Science and Technology.