Abstract
In the present study, nanoparticles filled with honeycomb-like MnCo2S4 (MCS) nanostructures are prepared successfully on the surface of nickel foam using a simple and cost-effective chemical bath deposition method and can be used as a promising electroactive material for high performance supercapacitor applications. The electrochemical behavior of the as-prepared electroactive materials was studied by the cyclic voltammetry, galvanostatic charge/discharge, electron impedance spectroscopy. The crystalline phase, structure, morphology and composition of the as-prepared electroactive materials were analyzed by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. The performance of the as-prepared electroactive materials was carried out in a 3 M KOH electrolyte in the three-electrode system. The unique nanoparticle structures enable and provides the more efficient pathways for the rapid mobility of electrons and ions. As a result, the as-prepared binder-free MCS electrode exhibits a higher specific capacity of 129.7 mA h g−1 at 1 A g−1, superior rate capability of 88.51% after 4000 cycles and excellent cycling stability of 87.81% respectively, which are much higher than that of MCO electrode. These results reveal that the as synthesized MCS electrode found to be the most promising candidate for high-performance supercapacitor applications.
Original language | English (US) |
---|---|
Pages (from-to) | 101159 |
Journal | Journal of Energy Storage |
Volume | 27 |
DOIs | |
State | Published - Dec 23 2019 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledgements: This research was supported by Basic Research Laboratory through the National Research Foundations of Korea, funded by the Ministry of Science, ICT and Future Planning (NRF-2015R1A4A1041584). We also thankful to KBSI for measurements. Also, this work was supported by UAEU Program for Advanced Research (UPAR) under Grant no. 31S312.