Facile preparation of C, N co-modified Nb2O5 nanoneedles with enhanced visible light photocatalytic activity

Jiao Xue, Runwei Wang, Zongtao Zhang, Shilun Qiu

Research output: Contribution to journalArticlepeer-review

43 Scopus citations


C, N co-modified niobium pentoxide (Nb2O5) nanoneedles have been successfully synthesized via a facile hydrothermal method with Niobium Chloride (NbCl5) as a precursor and triethylamine as both the carbon and nitrogen source. The formation process of Nb2O5 nanoneedles has been presented in detail by investigating the effect of the crystallization temperature, the amount of triethylamine and the calcination temperature. The as-prepared Nb2O5 nanoneedles exhibit more efficient photocatalytic activity than commercial Degussa P25 and commercial Nb2O5 towards photodegradation of Rhodamine B (RhB) at a concentration of 10 mg L−1 under visible light. Special chemical species, such as carbonate species and NOX species, that exist on the surface of the as-prepared catalyst could extend the absorption into the visible region and thus enhance the photocatalytic activity of the Nb2O5 nanoneedles. At the same time, the obtained Nb2O5 nanoneedles exhibit excellent stability even after three successive cycles. A possible photodegradation mechanism was proposed and the corresponding photodecomposition process of RhB over the Nb2O5 nanoneedles was elucidated by a reactive species trapping experiment, suggesting that h+ and O2˙− play a major role in the photodegradation of RhB in aqueous solution.
Original languageEnglish (US)
Pages (from-to)16519-16525
Number of pages7
JournalDalton Trans.
Issue number41
StatePublished - 2016
Externally publishedYes

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): CRG-1-2012-LAI-009
Acknowledgements: This work was supported by the National Natural Science Foundation of China (21390394), the National Basic Research Program of China (2012CB821700 and 2011CB808703), NSFC (21261130584 and 91022030), “111” project (B07016), the Award Project of KAUST (CRG-1-2012-LAI-009) and the Ministry of Education, Science and Technology Development Center Project (20120061130012).
This publication acknowledges KAUST support, but has no KAUST affiliated authors.


Dive into the research topics of 'Facile preparation of C, N co-modified Nb2O5 nanoneedles with enhanced visible light photocatalytic activity'. Together they form a unique fingerprint.

Cite this