Facile Direct C-H Arylation Polymerization of Conjugated Polymer, PDCBT, for Organic Solar Cells

Soo Young Jang, In bok Kim, Yunseul Kim, Dae Hee Lim, Hongkyu Kang, Martin Heeney, Dong Yu Kim

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Direct arylation polymerization (DArP) is a synthetic method for conjugated polymers; in DArP, organometallic functionalization steps are omitted and there are no toxic byproducts. As a result, it is considered a more sustainable alternative compared to conventional methods such as Stille polymerization. To explore the possibility of DArP-based polymers as donor materials in organic solar cells (OSCs), a series of conjugated polymers based on the structure of PDCBT (poly[2,2''''-bis[[(2-butyloctyl)oxy]carbonyl][2,2':5',2'':5'',2'''-quaterthiophene]-5,5'''-diyl]) are synthesized using DArP and Stille polymerization. By controlling the monomer concentration and reaction time in DArP, DArP-5 with the highest Mn (21.9 kDa) can be obtained and its optoelectronic properties, electrochemical properties, and microscopic molecular ordering are comparable to those of Stille-based PDCBT (Stille-P). Analysis of the polymer structure indicates no structural defects such as crosslinking from undesired β-coupling reactions in DArP-5. Upon blending with the PC71BM acceptor molecule, an increase in the crystallite size of DArP-5 is also observed. In OSC devices with a polymer:PC71BM bulk-heterojunction photoactive layer, DArP-5 demonstrates a comparable power conversion efficiency of 5.8% with that of Stille-P (5.5%). These results prove that DArP is suitable for synthesizing PDCBT, and DArP-based PDCBT can be used in OSCs as an alternative of Stille-based one.
Original languageEnglish (US)
JournalMacromolecular Rapid Communications
Volume43
Issue number20
DOIs
StatePublished - Oct 1 2022
Externally publishedYes

Bibliographical note

Generated from Scopus record by KAUST IRTS on 2023-02-14

ASJC Scopus subject areas

  • Materials Chemistry
  • Organic Chemistry
  • Polymers and Plastics

Fingerprint

Dive into the research topics of 'Facile Direct C-H Arylation Polymerization of Conjugated Polymer, PDCBT, for Organic Solar Cells'. Together they form a unique fingerprint.

Cite this