Extreme Computing for Extreme Adaptive Optics

Hatem Ltaief, Dalal E. Sukkari, Oliver Guyon, David E. Keyes

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations


The real-time correction of telescopic images in the search for exoplanets is highly sensitive to atmospheric aberrations. The pseudoinverse algorithm is an efficient mathematical method to filter out these turbulences.We introduce a new partial singular value decomposition (SVD) algorithm based on QR-based Diagonally Weighted Halley (QDWH) iteration for the pseudo-inverse method of adaptive optics. The QDWH partial SVD algorithm selectively calculates the most significant singular values and their corresponding singular vectors. We develop a high performance implementation and demonstrate the numerical robustness of the QDWH-based partial SVD method. We also perform a benchmarking campaign on various generations of GPU hardware accelerators and compare against the state-of-the-art SVD implementation SGESDD from the MAGMA library. Numerical accuracy and performance results are reported using synthetic and real observational datasets from the Subaru telescope. Our implementation outperforms SGESDD by up to fivefold and fourfold performance speedups on ill-conditioned synthetic matrices and real observational datasets, respectively. The pseudo-inverse simulation code will be deployed on-sky for the Subaru telescope during observation nights scheduled early 2018.
Original languageEnglish (US)
Title of host publicationProceedings of the Platform for Advanced Scientific Computing Conference on - PASC '18
PublisherAssociation for Computing Machinery (ACM)
ISBN (Print)9781450358910
StatePublished - Jun 20 2018


Dive into the research topics of 'Extreme Computing for Extreme Adaptive Optics'. Together they form a unique fingerprint.

Cite this