Extraordinary magnetoresistance in semiconductor/metal hybrids: A review

Jian Sun, Jürgen Kosel

Research output: Contribution to journalArticlepeer-review

22 Scopus citations


The Extraordinary Magnetoresistance (EMR) effect is a change in the resistance of a device upon the application of a magnetic field in hybrid structures, consisting of a semiconductor and a metal. The underlying principle of this phenomenon is a change of the current path in the hybrid structure upon application of a magnetic field, due to the Lorentz force. Specifically, the ratio of current, flowing through the highly conducting metal and the poorly conducting semiconductor, changes. The main factors for the device's performance are: the device geometry, the conductivity of the metal and semiconductor, and the mobility of carriers in the semiconductor. Since the discovery of the EMR effect, much effort has been devoted to utilize its promising potential. In this review, a comprehensive overview of the research on the EMR effect and EMR devices is provided. Different geometries of EMR devices are compared with respect to MR ratio and output sensitivity, and the criteria of material selection for high-performance devices are discussed. 2013 by the authors.
Original languageEnglish (US)
Pages (from-to)500-516
Number of pages17
Issue number2
StatePublished - Feb 13 2013

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01

ASJC Scopus subject areas

  • General Materials Science


Dive into the research topics of 'Extraordinary magnetoresistance in semiconductor/metal hybrids: A review'. Together they form a unique fingerprint.

Cite this