Extended X-ray Absorption Fine Structure Revealed the Mechanism of Arsenate Removal by the Fe/Mn Oxide-Based Composite under Conditions of Fully Saturated Sorption Sites

Natalia Chubar, Małgorzata Szlachta, Vasyl Gerda

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Molecular mechanism of arsenate removal by a promising inorganic composite based on Fe/Mn oxides and MnCO3 was studied under the rarely investigated conditions of fully saturated sorption sites (characteristic of dynamic sorption, such as water treatment plants) at the pH of 4/6/7/8 using As K-edge extended X-ray absorption fine structure (EXAFS)/X-ray absorption near-edge structure (XANES), X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy (FTIR). Comparison of arsenic speciation in the initial adsorbate solution (calculated by Visual MINTEQ) and after sorption (determined by As 3d XPS) allowed the interpretation of the initializing forces of the interfacial processes. Contribution of various solid phases of this composite anion exchanger to the removal of arsenate was disclosed by examining the Fe 2p3/2 and Mn 2p3/2 XPS spectra supported by FTIR. As K-edge EXAFS simulation not only proved the chemisorptive binding of aqueous As(V) anions to the Fe/Mn oxide-based adsorbent but also demonstrated the presence of a variety of sorption sites in this complex structured porous material, which became available step-wise upon an increasing pressure on the interface with high arsenate loading during the long-term sorption process. The type of inner-sphere complexation of As(V) on the saturated surface discovered by As K-edge EXAFS modeling was a function of pH. Analysis of EXAFS fitting data resulted in suggestion of a methodological idea on how the EXAFS-derived coordination numbers can be used to distinguish the localization of adsorbed ions (surface versus structure emptiness). This work also provides more insights into the superiority of composite adsorbents (compared to the materials based on individual compounds) in terms of their capability to adapt/change the molecular sorption mechanism in order to inactivate (remove) more toxic aqueous anions.
Original languageEnglish (US)
JournalACS Applied Materials & Interfaces
DOIs
StatePublished - Sep 6 2023
Externally publishedYes

Bibliographical note

KAUST Repository Item: Exported on 2023-09-11
Acknowledged KAUST grant number(s): KUK-C1-017-12
Acknowledgements: This work was funded by the King Abdullah University of Science and Technology (KAUST), Saudi Arabia, via the Global Collaborative Research program (award no KUK-C1-017-12 to Utrecht University). EXAFS/XANES research at the European Synchrotron Radiation Facility (ESRF) at the Dutch-Belgian beamline (DUBBLE) was financed by Dutch Research Council (NWO) in 2011. Dr. Matej Mičušík (Polymer Institute of Slovak Academy of Sciences, Slovak Republic) conducted all XPS analysis. The authors express gratitude to anonymous reviewers and editor for their valuable help to improve this work considerably.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.

ASJC Scopus subject areas

  • General Materials Science

Fingerprint

Dive into the research topics of 'Extended X-ray Absorption Fine Structure Revealed the Mechanism of Arsenate Removal by the Fe/Mn Oxide-Based Composite under Conditions of Fully Saturated Sorption Sites'. Together they form a unique fingerprint.

Cite this