TY - JOUR
T1 - Exploring the Leidenfrost Effect for the Deposition of High-Quality In2
O3
Layers via Spray Pyrolysis at Low Temperatures and Their Application in High Electron Mobility Transistors
AU - Isakov, Ivan
AU - Faber, Hendrik
AU - Grell, Max
AU - Wyatt-Moon, Gwenhivir
AU - Pliatsikas, Nikos
AU - Kehagias, Thomas
AU - Dimitrakopulos, George P.
AU - Patsalas, Panos P.
AU - Li, Ruipeng
AU - Anthopoulos, Thomas D.
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: I.I., M.G., and T.D.A. acknowledge the financial support from PragmatIC Printing Limited (Company Number 07423954) and from the Engineering and Physical Sciences Research Council (EPSRC) (Grant No. EP/G037515/1). CHESS was supported by the NSF & NIH/NIGMS via NSF Award No. DMR-1332208.
PY - 2017/4/6
Y1 - 2017/4/6
N2 - The growth mechanism of indium oxide (InO) layers processed via spray pyrolysis of an aqueous precursor solution in the temperature range of 100-300 °C and the impact on their electron transporting properties are studied. Analysis of the droplet impingement sites on the substrate's surface as a function of its temperature reveals that Leidenfrost effect dominated boiling plays a crucial role in the growth of smooth, continuous, and highly crystalline InO layers via a vapor phase-like process. By careful optimization of the precursor formulation, deposition conditions, and choice of substrate, this effect is exploited and ultrathin and exceptionally smooth layers of InO are grown over large area substrates at temperatures as low as 252 °C. Thin-film transistors (TFTs) fabricated using these optimized InO layers exhibit superior electron transport characteristics with the electron mobility reaching up to 40 cm V s, a value amongst the highest reported to date for solution-processed InO TFTs. The present work contributes enormously to the basic understanding of spray pyrolysis and highlights its tremendous potential for large-volume manufacturing of high-performance metal oxide thin-film transistor electronics.
AB - The growth mechanism of indium oxide (InO) layers processed via spray pyrolysis of an aqueous precursor solution in the temperature range of 100-300 °C and the impact on their electron transporting properties are studied. Analysis of the droplet impingement sites on the substrate's surface as a function of its temperature reveals that Leidenfrost effect dominated boiling plays a crucial role in the growth of smooth, continuous, and highly crystalline InO layers via a vapor phase-like process. By careful optimization of the precursor formulation, deposition conditions, and choice of substrate, this effect is exploited and ultrathin and exceptionally smooth layers of InO are grown over large area substrates at temperatures as low as 252 °C. Thin-film transistors (TFTs) fabricated using these optimized InO layers exhibit superior electron transport characteristics with the electron mobility reaching up to 40 cm V s, a value amongst the highest reported to date for solution-processed InO TFTs. The present work contributes enormously to the basic understanding of spray pyrolysis and highlights its tremendous potential for large-volume manufacturing of high-performance metal oxide thin-film transistor electronics.
UR - http://hdl.handle.net/10754/623834
UR - http://onlinelibrary.wiley.com/doi/10.1002/adfm.201606407/full
UR - http://www.scopus.com/inward/record.url?scp=85017398214&partnerID=8YFLogxK
U2 - 10.1002/adfm.201606407
DO - 10.1002/adfm.201606407
M3 - Article
SN - 1616-301X
VL - 27
SP - 1606407
JO - Advanced Functional Materials
JF - Advanced Functional Materials
IS - 22
ER -