Abstract
This study aims at evaluating the performance of the Maximum Entropy method in assessing landslide susceptibility, exploiting topographic and multispectral remote sensing predictors. We selected the catchment of the Giampilieri stream, which is located in the north-eastern sector of Sicily (southern Italy), as test site. On 1/10/2009, a storm rainfall triggered in this area hundreds of debris flow/avalanche phenomena causing extensive economical damage and loss of life. Within this area a presence-only-based statistical method was applied to obtain susceptibility models capable of distinguish future activation sites of debris flow and debris slide, which where the main source failure mechanisms for flow or avalanche type propagation. The set of predictors used in this experiment comprised primary and secondary topographic attributes, derived by processing a high resolution digital elevation model, CORINE land cover data and a set of vegetation and mineral indices obtained by processing multispectral ASTER images. All the selected data sources are dated before the disaster. A spatially random partition technique was adopted for validation, generating fifty replicates for each of the two considered movement typologies in order to assess accuracy, precision and reliability of the models. The debris slide and debris flow susceptibility models produced high performances with the first type being the best fitted. The evaluation of the probability estimates around the mean value for each mapped pixel shows an inverted relation, with the most robust models corresponding to the debris flows. With respect to the role of each predictor within the modelling phase, debris flows appeared to be primarily controlled by topographic attributes whilst the debris slides were better explained by remotely sensed derived indices, particularly by the occurrence of previous wildfires across the slope. The overall excellent performances of the two models suggest promising perspectives for the application of presence-only methods and remote sensing derived predictors. This article is protected by copyright. All rights reserved.
Original language | English (US) |
---|---|
Pages (from-to) | 1776-1789 |
Number of pages | 14 |
Journal | Earth Surface Processes and Landforms |
Volume | 41 |
Issue number | 12 |
DOIs | |
State | Published - Jul 27 2016 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01ASJC Scopus subject areas
- Earth and Planetary Sciences (miscellaneous)
- Earth-Surface Processes
- Geography, Planning and Development