Abstract
As a result of the energy crisis in recent decades, biofuels have gained importance as an option to diminish the oil dependence of automotive industry. Ethanol is one of these biofuels for which demand around the world has increased in recent years. However, to be used as a fuel, the ethanol must be dehydrated to avoid problems in actual engines, and this step has a high energy cost. To overcome this drawback, some studies have demonstrated the use of wet ethanol in homogeneous charge compression ignition (HCCI) engines. In this work, the production of wet ethanol, using conventional distillation, was studied using rigorous simulation studies and experimental tests in a distillation column. The simulation analysis and experimental validation of the energy requirements to obtain wet ethanol were achieved. The results showed that wet ethanol can be produced by using a distillation column with a small number of stages and low reflux ratios, which results in energy savings. Also, the results indicated that for low purities of the distilled ethanol (wet ethanol), the ratios between the energy required during the distillation process and the energy produced by ethanol during the combustion were low. This result implies that the use of wet ethanol can be considered as realistic option in HCCI engines.
Original language | English (US) |
---|---|
Pages (from-to) | 440-445 |
Number of pages | 6 |
Journal | Energy Technology |
Volume | 2 |
Issue number | 5 |
DOIs | |
State | Published - May 1 2014 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Keywords
- Biofuels
- Distillation
- Engines
- Ethanol
- Moisture
ASJC Scopus subject areas
- General Energy