Experimental and modelling study of hydrogen ignition in CO2 bath gas

James M. Harman-Thomas, Touqeer Anwar Kashif, Kevin J. Hughes, Mohamed Pourkashanian, Aamir Farooq

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Direct-fired supercritical CO2 power cycles, operating on natural gas or syngas, have been proposed as future energy technologies with 100 % carbon capture at a price competitive with existing fossil fuel technologies. Likewise, blue or green hydrogen may be used for power generation to counter the intermittency of renewable power technologies. In this work, ignition delay times (IDTs) of hydrogen were measured in a high concentration of CO2 bath gas over 1050 – 1300 K and pressures between 20 and 40 bar. Measured datasets were compared with chemical kinetic simulations using AramcoMech 2.0 and the University of Sheffield supercritical CO2 (UoS sCO2 2.0) chemical kinetic mechanisms. The UoS sCO2 2.0 mechanism was recently developed to model IDTs of methane, hydrogen, and syngas in CO2 bath gas. Sensitivity analyses were used to identify important reactions and to illustrate the trends observed among various datasets. The performance of both mechanisms was evaluated quantitatively by comparing the average absolute error between the predicted and experimental IDTs, which showed UoS sCO2 2.0 as the superior mechanism for modelling hydrogen IDTs in CO2 bath gas. The importance of OH time-histories is identified as the most appropriate next step in further validation of the kinetic mechanism.
Original languageEnglish (US)
Pages (from-to)126664
JournalFuel
Volume334
DOIs
StatePublished - Nov 13 2022

Bibliographical note

KAUST Repository Item: Exported on 2022-11-28
Acknowledgements: The work of KAUST authors was funded by baseline research funds at King Abdullah University of Science and Technology (KAUST). The work of UoS was supported by EPSRC Centre for Doctoral Training in Resilient Decarbonised Fuel Energy Systems (Grant number: EP/S022996/1) and the International Flame Research Federation (IFRF).

ASJC Scopus subject areas

  • Energy Engineering and Power Technology
  • Organic Chemistry
  • General Chemical Engineering
  • Fuel Technology

Fingerprint

Dive into the research topics of 'Experimental and modelling study of hydrogen ignition in CO2 bath gas'. Together they form a unique fingerprint.

Cite this