Abstract
Low-dimensional organic-inorganic hybrid lead halides have opened up a new frontier in single-component phosphors for white emission, which stems from self-trapped excitons (STEs), where STE states are dependent on lattice deformation, involving interactions between an inorganic skeleton and organic cations to consequently affect electron-phonon coupling. Herein, to decouple the crystal structure dominator on emission mechanisms, we employ the protonated benzimidazole as organic cations to synthesize two 100-oriented two-dimensional (2D) perovskites with Br- or Cl- as halogen anions, separately. Interestingly, even with a similar single layered crystal structure that is almost distortion-free in an inorganic octahedral framework, the two as-synthesized perovskites show distinct emission mechanisms. The underlying halogen regulatory mechanism is unveiled. In addition to changing the lattice deformation energy and self-trapping energy of STEs, the halogen substitution results in a 10-fold enhancement in electron-phonon coupling that affects STE dynamics. Therefore, this suggests a general design principle to tailor electron-phonon coupling in low-dimensional perovskites for broadband white emission.
Original language | English (US) |
---|---|
Pages (from-to) | 453-460 |
Number of pages | 8 |
Journal | ACS Energy Letters |
DOIs | |
State | Published - Dec 28 2021 |
Bibliographical note
KAUST Repository Item: Exported on 2022-01-25Acknowledgements: This work was supported by funding from the National Natural Science Foundation (22075022 and 21703008). We also thank the “Cultivate Creative Talents Project” of Beijing Institute of Technology (BIT) for financial support. The research reported in this publication was also supported by the King Abdullah University of Science and Technology (KAUST).