Exceptional Visible-Light Activities of TiO2-Coupled N-Doped Porous Perovskite LaFeO3 for 2,4-Dichlorophenol Decomposition and CO2 Conversion

Muhammad Humayun, Yang Qu, Fazal Raziq, Rui Yan, Zhijun Li, Xuliang Zhang, Liqiang Jing

Research output: Contribution to journalArticlepeer-review

139 Scopus citations

Abstract

In this work, TiO2-coupled N-doped porous perovskite-type LaFeO3 nanocomposites as highly efficient, cheap, stable, and visible-light photocatalysts have successfully been prepared via wet chemical processes. It is shown that the amount-optimized nanocomposite exhibits exceptional visible-light photocatalytic activities for 2,4-dichlorophenol (2,4-DCP) degradation by ∼3-time enhancement and for CO2 conversion to fuels by ∼4-time enhancement, compared to the resulting porous LaFeO3 with rather high photoactivity due to its large surface area. It is clearly demonstrated, by means of various experimental data, especially for the ·OH amount evaluation, that the obviously enhanced photoactivities are attributed to the increased specific surface area by introducing pores, to the extended visible-light absorption by doping N to create surface states, and to the promoted charge transfer and separation by coupling TiO2. Moreover, it is confirmed from radical trapping experiments that the photogenerated holes are the predominant oxidants in the photocatalytic degradation of 2,4-DCP. Furthermore, a possible photocatalytic degradation mechanism for 2,4-DCP is proposed mainly based on the resultant crucial intermediate, 2-chlorosuccinic acid with m/z = 153, that readily transform into CO2 and H2O. This work opens up a new feasible route to synthesize visible-light-responsive high-activity perovskite-type nanophotocatalysts for efficient environmental remediation and energy production. (Chemical Equation Presented).
Original languageEnglish (US)
Pages (from-to)13600-13610
Number of pages11
JournalEnvironmental Science and Technology
Volume50
Issue number24
DOIs
StatePublished - Dec 20 2016
Externally publishedYes

Bibliographical note

Generated from Scopus record by KAUST IRTS on 2023-09-21

ASJC Scopus subject areas

  • Environmental Chemistry
  • General Chemistry

Fingerprint

Dive into the research topics of 'Exceptional Visible-Light Activities of TiO2-Coupled N-Doped Porous Perovskite LaFeO3 for 2,4-Dichlorophenol Decomposition and CO2 Conversion'. Together they form a unique fingerprint.

Cite this