Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus

Thomas Mock, Robert P. Otillar, Jan Strauss, Mark McMullan, Pirita Paajanen, Jeremy Schmutz, Asaf Salamov, Remo Sanges, Andrew Toseland, Ben J. Ward, Andrew E. Allen, Christopher L. Dupont, Stephan Frickenhaus, Florian Maumus, Alaguraj Veluchamy, Taoyang Wu, Kerrie W. Barry, Angela Falciatore, Maria I. Ferrante, Antonio E. FortunatoGernot Glöckner, Ansgar Gruber, Rachel Hipkin, Michael G. Janech, Peter G. Kroth, Florian Leese, Erika A. Lindquist, Barbara R. Lyon, Joel Martin, Christoph Mayer, Micaela Parker, Hadi Quesneville, James A. Raymond, Christiane Uhlig, Ruben E. Valas, Klaus U. Valentin, Alexandra Z. Worden, E. Virginia Armbrust, Matthew D. Clark, Chris Bowler, Beverley R. Green, Vincent Moulton, Cock van Oosterhout, Igor V. Grigoriev

Research output: Contribution to journalArticlepeer-review

280 Scopus citations

Abstract

The Southern Ocean houses a diverse and productive community of organisms. Unicellular eukaryotic diatoms are the main primary producers in this environment, where photosynthesis is limited by low concentrations of dissolved iron and large seasonal fluctuations in light, temperature and the extent of sea ice. How diatoms have adapted to this extreme environment is largely unknown. Here we present insights into the genome evolution of a cold-adapted diatom from the Southern Ocean, Fragilariopsis cylindrus, based on a comparison with temperate diatoms. We find that approximately 24.7 per cent of the diploid F. cylindrus genome consists of genetic loci with alleles that are highly divergent (15.1 megabases of the total genome size of 61.1 megabases). These divergent alleles were differentially expressed across environmental conditions, including darkness, low iron, freezing, elevated temperature and increased CO2. Alleles with the largest ratio of non-synonymous to synonymous nucleotide substitutions also show the most pronounced condition-dependent expression, suggesting a correlation between diversifying selection and allelic differentiation. Divergent alleles may be involved in adaptation to environmental fluctuations in the Southern Ocean.
Original languageEnglish (US)
Pages (from-to)536-540
Number of pages5
JournalNature
Volume541
Issue number7638
DOIs
StatePublished - Jan 16 2017

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: We thank A. Stecher and K. Schmidt for extracting and providing environmental DNA samples and the Natural Environment Research Council UK (NERC) Biomolecular Analysis Facility (NBAF) for conducting transcriptome sequencing and providing bioinformatics support. C.B. acknowledges funding from the ERC Advanced Grant ERC-2011-ADG (Diatomite). The work conducted by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, was supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. PacBio sequencing and library construction was delivered via the BBSRC National Capability in Genomics (BB/J010375/1) at the Earlham Institute (formerly The Genome Analysis Centre, Norwich), by members of the Platforms and Pipelines Group, PacBio assembly and sequence analysis was strategically funded by the BBSRC, Institute Strategic Programme Grant (BB/J004669/1). Additional funding for this work was provided by NERC under grants NE/I001751/1, NE/K004530/1, MGF (NBAF) grant 197, The Royal Society grant RG090774 and the Earth & Life Systems Alliance in Norwich.

Fingerprint

Dive into the research topics of 'Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus'. Together they form a unique fingerprint.

Cite this