Abstract
The performance of the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA)-3B42 version 7 product is assessed over north-eastern Iberia, a region with considerable topographical gradients and complexity. Precipitation characteristics from a dense network of 656 rain gauges, spanning the period from 1998 to 2009, are used to evaluate TMPA-3B42 estimates on a daily scale. A set of accuracy estimators, including the relative bias, mean absolute error (MAE), root mean square error (RMSE) and Spearman coefficient was used to evaluate the results. The assessment indicates that TMPA-3B42 product is capable of describing the seasonal characteristics of the observed precipitation over most of the study domain. In particular, TMPA-3B42 precipitation agrees well with in situ measurements, with MAE less than 2.5mm.day-1, RMSE of 6.4mm.day-1 and Spearman correlation coefficients generally above 0.6. TMPA-3B42 provides improved accuracies in winter and summer, whereas it performs much worse in spring and autumn. Spatially, the retrieval errors show a consistent trend, with a general overestimation in regions of low altitude and underestimation in regions of heterogeneous terrain. TMPA-3B42 generally performs well over inland areas, while showing less skill in the coastal regions. A set of skill metrics, including a false alarm ratio [FAR], frequency bias index [FBI], the probability of detection [POD] and threat score [TS], is also used to evaluate TMPA performance under different precipitation thresholds (1, 5, 10, 25 and 50mm.day-1). The results suggest that TMPA-3B42 retrievals perform well in specifying moderate rain events (5-25mm.day-1), but show noticeably less skill in producing both light (
Original language | English (US) |
---|---|
Pages (from-to) | 188-200 |
Number of pages | 13 |
Journal | Global and Planetary Change |
Volume | 133 |
DOIs | |
State | Published - Aug 29 2015 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledgements: Research reported in this publication was supported by the King Abdullah University of Science and Technology (KAUST), Saudi Arabia. This work has also been supported by the research project LIFE12 ENV/ES/000536 (Demonstration and validation of innovative methodology for regional climate change adaptation in the Mediterranean area-LIFE MEDACC) financed by the LIFE program of the European Commission. We acknowledge the National Aeronautics and Space Administration (NASA) for providing the TMPA-3B42 dataset and the Spanish State Meteorological Agency (AEMET) for providing precipitation observations.