Abstract
The packing density of anodes in microbial fuel cells (MFCs) was examined here using four different graphite fiber brush anode configurations. The impact of anodes on performance was studied in terms of carbon fiber length (brush diameter), the number of brushes connected in parallel, and the wire current collector gage. MFCs with different numbers of brushes (one, three or six) set perpendicular to the cathode all produced similar power densities (1200±40mW/m2) and coulombic efficiencies (60%±5%). Reducing the number of brushes by either disconnecting or removing them reduced power, demonstrating the importance of anode projected area covering the cathode, and therefore the need to match electrode projected areas to maintain high performance. Multi-brush reactors had the same COD removal as single-brush systems (90%). The use of smaller Ti wire gages did not affect power generation, which will enable the use of less metal, reducing material costs. © 2013 Elsevier Ltd.
Original language | English (US) |
---|---|
Pages (from-to) | 379-385 |
Number of pages | 7 |
Journal | Bioresource Technology |
Volume | 148 |
DOIs | |
State | Published - Nov 2013 |
Externally published | Yes |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledgements: The research reported here was financially supported by the King Abdullah University of Science and Technology in Saudi Arabia, and by the Strategic Environmental Research and Development Program (SERDP).
This publication acknowledges KAUST support, but has no KAUST affiliated authors.