Evaluation of Diverse Convolutional Neural Networks and Training Strategies for Wheat Leaf Disease Identification with Field-Acquired Photographs

Jiale Jiang, Haiyan Liu, Chen Zhao, Can He, Jifeng Ma, Tao Cheng, Yan Zhu, Weixing Cao, Xia Yao

Research output: Contribution to journalArticlepeer-review

7 Scopus citations


Tools for robust identification of crop diseases are crucial for timely intervention by farmers to minimize yield losses. Visual diagnosis of crop diseases is time-consuming and laborious, and has become increasingly unsuitable for the needs of modern agricultural production. Recently, deep convolutional neural networks (CNNs) have been used for crop disease diagnosis due to their rapidly improving accuracy in labeling images. However, previous CNN studies have mostly used images of single leaves photographed under controlled conditions, which limits operational field use. In addition, the wide variety of available CNNs and training options raises important questions regarding optimal methods of implementation of CNNs for disease diagnosis. Here, we present an assessment of seven typical CNNs (VGG-16, Inception-v3, ResNet-50, DenseNet-121, EfficentNet-B6, ShuffleNet-v2 and MobileNetV3) based on different training strategies for the identification of wheat main leaf diseases (powdery mildew, leaf rust and stripe rust) using field images. We developed a Field-based Wheat Diseases Images (FWDI) dataset of field-acquired images to supplement the public PlantVillage dataset of individual leaves imaged under controlled conditions. We found that a transfer-learning method employing retuning of all parameters produced the highest accuracy for all CNNs. Based on this training strategy, Inception-v3 achieved the highest identification accuracy of 92.5% on the test dataset. While lightweight CNN models (e.g., ShuffleNet-v2 and MobileNetV3) had shorter processing times (
Original languageEnglish (US)
Pages (from-to)3446
JournalRemote Sensing
Issue number14
StatePublished - Jul 18 2022

Bibliographical note

KAUST Repository Item: Exported on 2022-09-14
Acknowledgements: This research was funded by Civil advance space technology research project (D040104), the National Natural Science Foundation of China (31971780), the Key Projects (Advanced Technology) of Jiangsu Province (BE 2019383), the National Key Research and Development Program of China (2021YFE0194800) and Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry (CIC-MCP). We thank Timothy A. Warner for his help with manuscript review.

ASJC Scopus subject areas

  • Earth and Planetary Sciences(all)


Dive into the research topics of 'Evaluation of Diverse Convolutional Neural Networks and Training Strategies for Wheat Leaf Disease Identification with Field-Acquired Photographs'. Together they form a unique fingerprint.

Cite this