Evaluation of cubic, PC-SAFT, and GERG2008 equations of state for accurate calculations of thermophysical properties of hydrogen-blend mixtures

Saleh Bawazeer, Nurudeen Yekeen, Hussein Hoteit

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

Hydrogen (H2) is a clean fuel and key enabler of energy transition into green renewable sources and a method of achieving net-zero emissions by 2050. Underground H2 storage (UHS) is a prominent method offering a permanent solution for a low-carbon economy to meet the global energy demand. However, UHS is a complex procedure where containment security, pore-scale scattering, and large-scale storage capacity can be influenced by H2 contamination due to mixing with cushion gases and reservoir fluids. The literature lacks comprehensive investigations of existing thermodynamic models in calculating the accurate transport properties of H2-blend mixtures essential to the efficient design of various H2 storage processes. This work benchmarks cubic equations of state (EoSs), namely Peng Robinson (PR) and Soave Redlich–Kwong (SRK) and their modifications by Boston–Mathias (PR-BM) and Schwartzentruber–Renon (SR-RK), for their reliability in predicting the thermophysical properties of binary and ternary H2-blend mixtures, including CH4, C2H6, C3H8, H2S, H2O, CO2, CO, and N2, in addition to Helmholtz-energy-based EoSs (i.e., PC-SAFT and GERG2008). The benchmarked models are regressed against the experimental data for vapor–liquid equilibrium (VLE) that covers a wide range of pressures (0.01 to 101 MPa), temperatures (92 K to 367 K), and mole fractions (0.001 to 0.90) of H2. The novelty of this work is in benchmarking and optimizing the parameters of the mentioned EoSs to study VLE envelopes, densities, and other critical transport properties, such as heat capacity and the Joule Thomson coefficient of H2 mixtures in a wide range of associated conditions. The results highlight the significant effect of the temperature-dependent binary interaction parameters on the calculations of thermophysical properties. The SR-RK EoS demonstrated the highest agreement with VLE data among the cubic EoSs with a low root mean square error and absolute average deviation. The PC-SAFT VLE models demonstrated results comparable to the SR-RK. The sensitivity analysis highlighted the high influence of impurity on changing the thermophysical behavior of H2-blend streams during the H2 storage process.
Original languageEnglish (US)
Pages (from-to)13876-13899
Number of pages24
JournalEnergy Reports
Volume8
DOIs
StatePublished - Oct 28 2022

Bibliographical note

KAUST Repository Item: Exported on 2022-10-31

ASJC Scopus subject areas

  • General Energy

Fingerprint

Dive into the research topics of 'Evaluation of cubic, PC-SAFT, and GERG2008 equations of state for accurate calculations of thermophysical properties of hydrogen-blend mixtures'. Together they form a unique fingerprint.

Cite this