Evaluating the Performance of DFT Functionals in Assessing the Interaction Energy and Ground-State Charge Transfer of Donor/Acceptor Complexes: Tetrathiafulvalene−Tetracyanoquinodimethane (TTF−TCNQ) as a Model Case

Gjergji Sini, John S. Sears, Jean-Luc Brédas

Research output: Contribution to journalArticlepeer-review

133 Scopus citations

Abstract

We have evaluated the performance of several density functional theory (DFT) functionals for the description of the ground-state electronic structure and charge transfer in donor/acceptor complexes. The tetrathiafulvalene- tetracyanoquinodimethane (TTF-TCNQ) complex has been considered as a model test case. Hybrid functionals have been chosen together with recently proposed long-range corrected functionals (ωB97X, ωB97X-D, LRC-ωPBEh, and LC-ωPBE) in order to assess the sensitivity of the results to the treatment and magnitude of exact exchange. The results show an approximately linear dependence of the ground-state charge transfer with the HOMO TTF-LUMOTCNQ energy gap, which in turn depends linearly on the percentage of exact exchange in the functional. The reliability of ground-state charge transfer values calculated in the framework of a monodeterminantal DFT approach was also examined. © 2011 American Chemical Society.
Original languageEnglish (US)
Pages (from-to)602-609
Number of pages8
JournalJournal of Chemical Theory and Computation
Volume7
Issue number3
DOIs
StatePublished - Jan 18 2011
Externally publishedYes

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): KUS-C1-015-21
Acknowledgements: This work has been supported by the Center for Advanced Molecular Photovoltaics, Award No. KUS-C1-015-21, made by King Abdullah University of Science and Technology (KAUST); the Georgia Research Alliance; the STC Program of the National Science Foundation under Award DMR-0120967; and the University of Cergy-Pontoise, France.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.

Fingerprint

Dive into the research topics of 'Evaluating the Performance of DFT Functionals in Assessing the Interaction Energy and Ground-State Charge Transfer of Donor/Acceptor Complexes: Tetrathiafulvalene−Tetracyanoquinodimethane (TTF−TCNQ) as a Model Case'. Together they form a unique fingerprint.

Cite this