Evaluating physiological responses of plants to salinity stress

Sónia Negrão, S. M. Schmöckel, Mark A. Tester

Research output: Contribution to journalArticlepeer-review

840 Scopus citations

Abstract

Background Because soil salinity is a major abiotic constraint affecting crop yield, much research has been conducted to develop plants with improved salinity tolerance. Salinity stress impacts many aspects of a plant’s physiology, making it difficult to study in toto. Instead, it is more tractable to dissect the plant’s response into traits that are hypothesized to be involved in the overall tolerance of the plant to salinity. Scope and conclusions We discuss how to quantify the impact of salinity on different traits, such as relative growth rate, water relations, transpiration, transpiration use efficiency, ionic relations, photosynthesis, senescence, yield and yield components. We also suggest some guidelines to assist with the selection of appropriate experimental systems, imposition of salinity stress, and obtaining and analysing relevant physiological data using appropriate indices. We illustrate how these indices can be used to identify relationships amongst the proposed traits to identify which traits are the most important contributors to salinity tolerance. Salinity tolerance is complex and involves many genes, but progress has been made in studying the mechanisms underlying a plant’s response to salinity. Nevertheless, several previous studies on salinity tolerance could have benefited from improved experimental design. We hope that this paper will provide pertinent information to researchers on performing proficient assays and interpreting results from salinity tolerance experiments.
Original languageEnglish (US)
Pages (from-to)1-11
Number of pages11
JournalAnnals of Botany
Volume119
Issue number1
DOIs
StatePublished - Oct 5 2016

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: The research reported in this publication was supported by funding from King Abdullah University of Science and Technology (KAUST). We thank Dr Christina Morris and Virginia Unkefer for editing the manuscript and Dr David E. Jarvis for providing us with unpublished data.

Fingerprint

Dive into the research topics of 'Evaluating physiological responses of plants to salinity stress'. Together they form a unique fingerprint.

Cite this