Evaluating machine-learning techniques for recruitment forecasting of seven North East Atlantic fish species

José Antonio Fernandes, Xabier Irigoien, Jose A. Lozano, Iñaki Iñza, Nerea Goikoetxea, Aritz Pérez

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

The effect of different factors (spawning biomass, environmental conditions) on recruitment is a subject of great importance in the management of fisheries, recovery plans and scenario exploration. In this study, recently proposed supervised classification techniques, tested by the machine-learning community, are applied to forecast the recruitment of seven fish species of North East Atlantic (anchovy, sardine, mackerel, horse mackerel, hake, blue whiting and albacore), using spawning, environmental and climatic data. In addition, the use of the probabilistic flexible naive Bayes classifier (FNBC) is proposed as modelling approach in order to reduce uncertainty for fisheries management purposes. Those improvements aim is to improve probability estimations of each possible outcome (low, medium and high recruitment) based in kernel density estimation, which is crucial for informed management decision making with high uncertainty. Finally, a comparison between goodness-of-fit and generalization power is provided, in order to assess the reliability of the final forecasting models. It is found that in most cases the proposed methodology provides useful information for management whereas the case of horse mackerel is an example of the limitations of the approach. The proposed improvements allow for a better probabilistic estimation of the different scenarios, i.e. to reduce the uncertainty in the provided forecasts.
Original languageEnglish (US)
Pages (from-to)35-42
Number of pages8
JournalEcological Informatics
Volume25
DOIs
StatePublished - Jan 2015

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: The research of Jose A. Fernandes and Nerea Goikoetxea is supported by a Doctoral Fellowship from the Fundacion Centros Tecnologicos Inaki Goenaga. This study has been supported by the following projects: Ecoanchoa (funded by the Department of Agriculture, Fisheries and Food of the Basque Country Government); the Saiotek and Research Groups 2007-2012 (IT-242-07) programs (Basque Government), TIN2008-06815-C02-01 (Spanish Ministry of Education and Science); COMBIOMED network in computational biomedicine (Carlos III Health Institute); the EU project UNCOVER; the EU FACT; and the EU VII Framework project MEECE (MEECE No 212085). Professor Michael Collins (SOES, University of Southampton, UK and AZTI-Tecnalia, Spain) is acknowledged for his comments on the manuscript and help with the English language. This is contribution 695 from the Marine Research Division (AZTI-Tecnalia).

ASJC Scopus subject areas

  • Ecology
  • Ecology, Evolution, Behavior and Systematics
  • Modeling and Simulation
  • Computational Theory and Mathematics
  • Applied Mathematics
  • Ecological Modeling
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Evaluating machine-learning techniques for recruitment forecasting of seven North East Atlantic fish species'. Together they form a unique fingerprint.

Cite this