Evaluating catalytic (gas-solid) spectroscopic cells as intrinsic kinetic reactors: Methanol-to-hydrocarbon reaction as a case study

José Valecillos, Gorka Elordi, Mengmeng Cui, Andrés T. Aguayo, Pedro Castaño

Research output: Contribution to journalArticlepeer-review

Abstract

Commercial spectroscopic gas-solid cell reactors are routinely used to analyze the dynamics of the catalyst (catalyst pelletized as a disc) structure and retained/adsorbed species using multiple operando techniques. These instruments have revolutionized the understanding of many catalytic reactions, including the methanol-to-hydrocarbon reactions. We propose a reaction engineering framework to evaluate spectroscopic cells based on (a) analyzing the fluid dynamic performance, (b) comparing their performance with a reference packed-bed reactor, and (d) the assessment of the external and internal mass transfer limitations. We have used a Specac HTHP and a Linkam THMS600 cell reactors coupled with the corresponding gas conditioning, spectroscopic, and mass spectrometry apparatuses. Our results reveal that these cells approach a perfect mixing only with several equivalent tanks in series and they are reliable at low catalyst loadings (thin disc) and high flowrates (low spacetimes). Under these conditions, we can avoid external-internal mass transfer limitations and fluid dynamic artifacts (e.g., bypassing or dead/stagnant volume zones), obtaining intrinsic kinetics with the corresponding operando spectroscopic signatures. The proposed methodology allows us to understand the influence of process parameters and potential design modifications on the observed kinetic performance.
Original languageEnglish (US)
Pages (from-to)137865
JournalChemical Engineering Journal
DOIs
StatePublished - Jul 2 2022

Bibliographical note

KAUST Repository Item: Exported on 2022-07-05
Acknowledged KAUST grant number(s): BAS/1/1403
Acknowledgements: This work was possible due to the financial support of the Ministry of Economy, Industry, and Competitiveness of the Spanish Government (project CTQ2016-79646-P, cofounded with ERDF funds), the Basque Government (projects IT1218-19 and IT1645-22), and the King Abdullah University of Science and Technology (KAUST, project BAS/1/1403). J.V. is grateful for the fellowship granted by the Ministry of Economy, Industry, and Competitiveness of the Spanish Government (BES-2014-069980). The authors are grateful for the technical and human support provided by IZO-SGI SGIker of the University of the Basque Country (UPV/EHU) and European funding (ERDF and ESF).

ASJC Scopus subject areas

  • Environmental Chemistry
  • Chemical Engineering(all)
  • Chemistry(all)
  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'Evaluating catalytic (gas-solid) spectroscopic cells as intrinsic kinetic reactors: Methanol-to-hydrocarbon reaction as a case study'. Together they form a unique fingerprint.

Cite this