Abstract
This paper develops a mathematical paradigm to study downlink error rates and throughput for half-duplex (HD) terminals served by a full-duplex (FD) base station (BS). Particularly, we study the dominant intra-cell interferer problem that appears between HD users scheduled on the same FD-channel. The distribution of the dominant interference is first characterized via its distribution function, which is derived in closed-form. Assuming Nakagami-m fading, the probability of error for different modulation schemes is studied and a unified closed-form expression for the average symbol error rate is derived. To this end, we show the effective downlink throughput gain, harvested by employing FD communication at a BS that serves HD users, as a function of the signal-to-interference-ratio when compared to an idealized HD interference and noise free BS operation.
Original language | English (US) |
---|---|
Title of host publication | 2017 IEEE International Conference on Communications, ICC 2017 |
Editors | Merouane Debbah, David Gesbert, Abdelhamid Mellouk |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Electronic) | 9781467389990 |
DOIs | |
State | Published - Jul 28 2017 |
Event | 2017 IEEE International Conference on Communications, ICC 2017 - Paris, France Duration: May 21 2017 → May 25 2017 |
Publication series
Name | IEEE International Conference on Communications |
---|---|
ISSN (Print) | 1550-3607 |
Conference
Conference | 2017 IEEE International Conference on Communications, ICC 2017 |
---|---|
Country/Territory | France |
City | Paris |
Period | 05/21/17 → 05/25/17 |
Bibliographical note
Publisher Copyright:© 2017 IEEE.
Keywords
- Dominant interference
- Gaussian noise
- Laplace interference
- Nakagami-m fading
- error rate
- throughput
ASJC Scopus subject areas
- Electrical and Electronic Engineering
- Computer Networks and Communications