Abstract
Metal nanomaterials normally adopt the same crystal structure as their bulk counterparts. Herein, for the first time, the unusual 4H hexagonal Ir, Rh, Os, Ru and Cu nanostructures have been synthesized on 4H Au nanoribbons (NRBs) via solution-phase epitaxial growth under ambient conditions. Interestingly, the 4H Au NRBs undergo partial phase transformation from 4H to face-centered cubic (fcc) structures after the metal coating. As a result, a series of polytypic 4H/fcc bimetallic Au@M (M = Ir, Rh, Os, Ru and Cu) core-shell NRBs has been obtained. We believe that the rational crystal structure-controlled synthesis of metal nanomaterials will bring new opportunities for exploring their phase-dependent physicochemical properties and promising applications.
Original language | English (US) |
---|---|
Pages (from-to) | 795-799 |
Number of pages | 5 |
Journal | Chem. Sci. |
Volume | 8 |
Issue number | 1 |
DOIs | |
State | Published - 2017 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledgements: This work was supported by MOE under AcRF Tier 2 (ARC 26/13, No. MOE2013-T2-1-034; ARC 19/15, No. MOE2014-T2-2-093; MOE2015-T2-2-057) and AcRF Tier 1 (RG5/13), and NTU under Start-Up Grant (M4081296.070.500000) in Singapore.