Abstract
The potential of protein microarrays in high-throughput screening (HTS) still remains largely unfulfilled, essentially because of the difficulty of extracting meaningful, quantitative data from such experiments. In the particular case of enzyme microarrays, low-molecular-weight fluorescent affinity labels (FALs) can function as ideally suited activity probes of the microarrayed enzymes. FALs form covalent bonds with enzymes in an activity-dependent manner and therefore can be used to characterize enzyme activity at each enzyme's address, as predetermined by the microarraying process. Relying on this principle, we introduce herein thematic enzyme microarrays (TEMA). In a kinetic setup we used TEMAs to determine the full set of kinetic constants and the reaction mechanism between the microarrayed enzymes (the theme of the microarray) and a family-wide FAL. Based on this kinetic understanding, in an HTS setup we established the practical and theoretical methodology for quantitative, multiplexed determination of the inhibition profile of compounds from a chemical library against each microarrayed enzyme. Finally, in a validation setup, Kiapp values and inhibitor profiles were confirmed and refined.
Original language | English (US) |
---|---|
Pages (from-to) | 622-627 |
Number of pages | 6 |
Journal | Nature biotechnology |
Volume | 23 |
Issue number | 5 |
DOIs | |
State | Published - 2005 |
Externally published | Yes |
Bibliographical note
Funding Information:We thank Robert Menard for providing recombinant cathepsin B and recombinant cathepsin L. This work was supported by the National Institute of Advanced Industrial Science and Technology of Japan and by the Stifterverband für die Deutsche Wissenschaft (Projekt-Nr. 11047: ForschungsDozentur Molekulare Katalyse).
ASJC Scopus subject areas
- Applied Microbiology and Biotechnology
- Bioengineering
- Molecular Medicine
- Biotechnology
- Biomedical Engineering