Environmental drivers of Arctic communities based on metabarcoding of marine sediment eDNA

Nathan R. Geraldi*, Dorte Krause-Jensen, Sarah B. Ørberg, Larissa Frühe, Mikael K. Sejr, Jørgen L.S. Hansen, Lars Lund-Hansen, Carlos M. Duarte

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Our ability to assess biodiversity at relevant spatial and temporal scales for informing management is of increasing importance given this is foundational to identify and mitigate the impacts of global change. Collecting baseline information and tracking ecological changes are particularly important for areas experiencing rapid changes and representing data gaps such as Arctic marine ecosystems. Environmental DNA has the potential to provide such data. We extracted environmental DNA from 90 surface sediment samples to assess eukaryote diversity around Greenland and Svalbard using two separate primer pairs amplifying different sections of the 18S rRNA gene. We detected 27 different phyla and 99 different orders and found that temperature and the change in temperature explained the most variation in the community in a single linear model, while latitude, sea ice cover and change in temperature explained the most variation in the community when assessed by individual non-linear models. We identified potential indicator taxa for Arctic climate change, including a terebellid annelid worm. In conclusion, our study demonstrates that environmental DNA offers a feasible method to assess biodiversity and identifies warming as a key driver of differences in biodiversity across these remote ecosystems.

Original languageEnglish (US)
Article number20231614
JournalProceedings of the Royal Society B: Biological Sciences
Volume291
Issue number2015
DOIs
StatePublished - Jan 24 2024

Bibliographical note

Publisher Copyright:
© 2024 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.

Keywords

  • 18S rRNA
  • Arctic
  • community ecology
  • environmental DNA
  • indicator species
  • metabarcoding

ASJC Scopus subject areas

  • General Immunology and Microbiology
  • General Biochemistry, Genetics and Molecular Biology
  • General Environmental Science
  • General Agricultural and Biological Sciences

Fingerprint

Dive into the research topics of 'Environmental drivers of Arctic communities based on metabarcoding of marine sediment eDNA'. Together they form a unique fingerprint.

Cite this