Abstract
We present our efforts to build an ensemble data assimilation and forecasting system for the Red Sea. The system consists of the high-resolution Massachusetts Institute of Technology general circulation model (MITgcm) to simulate ocean circulation and of the Data Research Testbed (DART) for ensemble data assimilation. DART has been configured to integrate all members of an ensemble adjustment Kalman filter (EAKF) in parallel, based on which we adapted the ensemble operations in DART to use an invariant ensemble, i.e., an ensemble Optimal Interpolation (EnOI) algorithm. This approach requires only single forward model integration in the forecast step and therefore saves substantial computational cost. To deal with the strong seasonal variability of the Red Sea, the EnOI ensemble is then seasonally selected from a climatology of long-term model outputs. Observations of remote sensing sea surface height (SSH) and sea surface temperature (SST) are assimilated every 3 days. Real-time atmospheric fields from the National Center for Environmental Prediction (NCEP) and the European Center for Medium-Range Weather Forecasts (ECMWF) are used as forcing in different assimilation experiments. We investigate the behaviors of the EAKF and (seasonal-) EnOI and compare their performances for assimilating and forecasting the circulation of the Red Sea. We further assess the sensitivity of the assimilation system to various filtering parameters (ensemble size, inflation) and atmospheric forcing.
Original language | English (US) |
---|---|
Pages (from-to) | 915-933 |
Number of pages | 19 |
Journal | Ocean Dynamics |
Volume | 67 |
Issue number | 7 |
DOIs | |
State | Published - May 26 2017 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledgements: This research work was supported by King Abdullah University of Science and Technology (KAUST), Saudi Arabia, and the Saudi ARAMCO Marine Environmental Research Center at KAUST (SAMERCK). The research made use of the resources of the Super computing Laboratory and computer clusters at KAUST.