TY - GEN
T1 - Enlightening the rules of disorder: from broadband energy harvesting to many-body solitons and light condensation dynamics
AU - Fratalocchi, Andrea
N1 - KAUST Repository Item: Exported on 2021-12-14
PY - 2013
Y1 - 2013
N2 - Summary form only given. The study of light propagation and interaction with disordered systems represents one of the ultimate frontiers in research in Photonics [1-3]. In this invited contribution I will summarize my theoretical and experimental research activity in the field, discussing both geometrical disorder (i.e., random distribution of index of refraction) as well as wave disorder (i.e., quantum chaotic structures). More specifically, I will begin by discussing broadband energy harvesting in material systems where the classical motion of light is totally non-reversible (Fig. 1a), showing experimental results on a new nanostructure (patent filing) able to increase the absorption of a given material up to a factor of nearly 90%. This process is dominated by the strong trapping of light in ergodic structures, and by the formation of Rogue waves (Fig. 1b), which are giant waves of large intensity whose generation can be fully controlled in these materials. I will then discuss the field of many-body solitons, and show how a soliton gas can generate dispersive shock waves from the cooperation of several soliton wave-particles (Fig. 1c). I will finally present results concerning the dynamics of light condensation in disordered systems, showing how the addition of disorder can increase the coherence of light through a process completely equivalent to a Bose-Einstein Condensation and induce strong localization effects (Fig. 1d).
AB - Summary form only given. The study of light propagation and interaction with disordered systems represents one of the ultimate frontiers in research in Photonics [1-3]. In this invited contribution I will summarize my theoretical and experimental research activity in the field, discussing both geometrical disorder (i.e., random distribution of index of refraction) as well as wave disorder (i.e., quantum chaotic structures). More specifically, I will begin by discussing broadband energy harvesting in material systems where the classical motion of light is totally non-reversible (Fig. 1a), showing experimental results on a new nanostructure (patent filing) able to increase the absorption of a given material up to a factor of nearly 90%. This process is dominated by the strong trapping of light in ergodic structures, and by the formation of Rogue waves (Fig. 1b), which are giant waves of large intensity whose generation can be fully controlled in these materials. I will then discuss the field of many-body solitons, and show how a soliton gas can generate dispersive shock waves from the cooperation of several soliton wave-particles (Fig. 1c). I will finally present results concerning the dynamics of light condensation in disordered systems, showing how the addition of disorder can increase the coherence of light through a process completely equivalent to a Bose-Einstein Condensation and induce strong localization effects (Fig. 1d).
UR - http://hdl.handle.net/10754/670627
UR - http://ieeexplore.ieee.org/document/6800836/
U2 - 10.1109/CLEOE-IQEC.2013.6800836
DO - 10.1109/CLEOE-IQEC.2013.6800836
M3 - Conference contribution
SN - 9781479905942
BT - 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC
PB - IEEE
ER -