Enhancing Physical Layer Security of Multiuser SIMO Mixed RF/FSO Relay Networks with Multi-Eavesdroppers

Ahmed H. Abd El-Malek, Anas M. Salhab, Salam A. Zummo, Mohamed-Slim Alouini

Research output: Chapter in Book/Report/Conference proceedingConference contribution

15 Scopus citations

Abstract

In this paper, we investigate the secrecy performance of multiuser (MU) single-input multiple-output (SIMO) mixed radio frequency (RF)/free space optical (FSO) relay network with opportunistic user scheduling and multiple eavesdropping attacks. The considered system includes multiple users, one amplify-and-froward (AF) relay, one destination and multiple eavesdroppers. The users are connected with a multi-antenna relay through RF links and the relay is connected with the destination through an FSO link. Maximal ratio combining (MRC) scheme is used at the relay node to combine the received signals at its different antennas. The RF/FSO channels are assumed to follow Nakagami-m/Gamma-Gamma fading models with considering the effect of pointing errors. In particular, we derive closed- form expressions for the exact and asymptotic outage probabilities. The asymptotic outage results are then used to obtain the optimal RF transmission power based on the dominant link between the RF and FSO links. Then, the considered system secrecy performance is investigated in the presence of multi- eavesdroppers where exact closed-form expression for the intercept probability is derived. Finally, a cooperative jamming model is proposed along with power allocation to enhance the system secrecy performance. Monte-Carlo simulations are provided to validate the achieved exact and asymptotic results.
Original languageEnglish (US)
Title of host publication2016 IEEE Globecom Workshops (GC Wkshps)
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
ISBN (Print)9781509024827
DOIs
StatePublished - Feb 9 2017

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This work was funded by the National Plan for Science, Technology and Innovation (Maarifah) - King Abdulaziz City for Science and Technology - through the Science and Technology Unit at King Fahd University of Petroleum & Minerals (KFUPM) - the Kingdom of Saudi Arabia, under grant number 15-ELE4157-04. The authors would like also to acknowledge the KFUPM-KAUST research initiative resulted from this research work.

Fingerprint

Dive into the research topics of 'Enhancing Physical Layer Security of Multiuser SIMO Mixed RF/FSO Relay Networks with Multi-Eavesdroppers'. Together they form a unique fingerprint.

Cite this