Abstract
Thermoelectric (TE) metal oxides overcome crucial disadvantages of traditional heavy-metal-alloy-based TE materials, such as toxicity, scarcity, and instability at high temperatures. Here, we report the TE properties of metal oxide superlattices, composed from alternating layers of 5% Pr3+-doped SrTiO3-δ (SPTO) and 20% Nb5+-doped SrTiO3-δ (STNO) fabricated using pulsed laser deposition (PLD). Excellent stability is established for these superlattices by maintaining the crystal structure and reproducing the TE properties after long-time (20 h) annealing at high temperature (∼1000 K). The introduction of oxygen vacancies as well as extrinsic dopants (Pr3+ and Nb5+), with different masses and ionic radii, at different lattice sites in SPTO and STNO layers, respectively, results in a substantial reduction of thermal conductivity via scattering a wider range of phonon spectrum without limiting the electrical transport and thermopower, leading to an enhancement in the figure-of-merit (ZT). The superlattice composed of 20 SPTO/STNO pairs, 8 unit cells of each layer, exhibits a ZT value of 0.46 at 1000 K, which is the highest among SrTiO3-based thermoelectrics. © 2015 American Chemical Society.
Original language | English (US) |
---|---|
Pages (from-to) | 2165-2171 |
Number of pages | 7 |
Journal | Chemistry of Materials |
Volume | 27 |
Issue number | 6 |
DOIs | |
State | Published - Mar 9 2015 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledgements: Research reported in this publication was supported by King Abdullah University of Science and Technology (KAUST).
ASJC Scopus subject areas
- Materials Chemistry
- General Chemical Engineering
- General Chemistry