Abstract
In this study, phytic acid (myo-inositol hexaphosphonic acid) was first immobilized by MIL101 via vacuum-assisted impregnation method. The obtained phytic@MIL101 was then utilized as a novel filler to incorporate into Nafion to fabricate hybrid proton exchange membrane for application in PEMFC under different relative humidities (RHs), especially under low RHs. High loading and uniform dispersion of phytic acid in MIL 101(Cr) were achieved as demonstrated by ICP, FT-IR, XPS, and EDS-mapping. The phytic@MIL101 was dispersed homogeneously in the Nafion matrix when the filler content was less than 12%. Hybrid membranes were evaluated by proton conductivity, mechanical property, thermal stability, and so forth. Remarkably, the Nafion/phytic@MIL hybrid membranes showed high proton conductivity at different RHs, especially under low RHs, which was up to 0.0608 S cm-1 and 7.63 × 10-4 S cm-1 at 57.4% RH and 10.5% RH (2.8 and 11.0 times higher than that of pristine membrane), respectively. Moreover, the mechanical property of Nafion/phtic@MIL hybrid membranes was substantially enhanced and the thermal stability of membranes was well preserved. © 2014 American Chemical Society.
Original language | English (US) |
---|---|
Pages (from-to) | 9799-9807 |
Number of pages | 9 |
Journal | ACS Applied Materials and Interfaces |
Volume | 6 |
Issue number | 12 |
DOIs | |
State | Published - Jun 25 2014 |
Externally published | Yes |
Bibliographical note
Generated from Scopus record by KAUST IRTS on 2023-09-20ASJC Scopus subject areas
- General Materials Science