Enhanced photocatalytic activity induced by sp 3 to sp 2 transition of carbon dopants in BiOCl crystals

Jianguo Sun, Sujuan Wu, Shi-Ze Yang, Qi Li, Jiawei Xiong, Zhenzhong Yang, Lin Gu, Xixiang Zhang, Lidong Sun

Research output: Contribution to journalArticlepeer-review

60 Scopus citations

Abstract

The insufficient light absorption and low quantum efficiency limit the photocatalytic performance of wide bandgap semiconductors. Here, we report a facile strategy to engineer the surface disordered defects of BiOCl nanosheets via carbon doping. The surface defects boost the light absorption and also the quantum yields, as the doped carbon atoms exhibit a transition from sp3 to sp2 hybridization at elevated temperature, corresponding to a change of assembly state from 3D cluster to 2D graphite-like structure. This transition results in an effective charge separation and thus one order of enhancement in photocatalytic activity toward phenol degradation under visible light. The current study opens an avenue to introduce sp3 to sp2 transition of carbon dopants for simultaneous increment of light absorption and quantum efficiency for application in photocatalysis and energy conversion.
Original languageEnglish (US)
Pages (from-to)467-472
Number of pages6
JournalApplied Catalysis B: Environmental
Volume221
DOIs
StatePublished - Sep 19 2017

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: We gratefully acknowledge the helpful and informative discussion with Prof. Zhipan Li, Dr. Yuan Yuan and Mr. Yuqi Zhang. This work was supported by the National Natural Science Foundation of China (No.51302329, 51501024) and the Fundamental Research Funds for the Central Universities (No.106112015CDJXY130010, 106112016CDJZR135506). The electron microscopy (S.Z.Y.) was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant No ACI-1053575 and Grant No DMR160118.

Fingerprint

Dive into the research topics of 'Enhanced photocatalytic activity induced by sp 3 to sp 2 transition of carbon dopants in BiOCl crystals'. Together they form a unique fingerprint.

Cite this