TY - GEN
T1 - Enhanced cognitive Radio Resource Management for LTE systems
AU - Alqerm, Ismail
AU - Shihada, Basem
AU - Shin, Kang G.
N1 - KAUST Repository Item: Exported on 2020-10-01
PY - 2013/10
Y1 - 2013/10
N2 - The explosive growth in mobile Internet and related services has increased the need for more bandwidth in cellular networks. The Long-Term Evolution (LTE) technology is an attractive solution for operators and subscribers to meet such need since it provides high data rates and scalable bandwidth. Radio Resource Management (RRM) is essential for LTE to provide better communication quality and meet the application QoS requirements. Cognitive resource management is a promising solution for LTE RRM as it improves network efficiency by exploiting radio environment information, intelligent optimization algorithms to configure transmission parameters, and mitigate interference. In this paper, we propose a cognitive resource management scheme to adapt LTE network parameters to the environment conditions. The scheme optimizes resource blocks assignment, modulation selection and bandwidth selection to maximize throughput and minimize interference. The scheme uses constrained optimization for throughput maximization and interference control. It is also enhanced by learning mechanism to reduce the optimization complexity and improve the decision-making quality. Our evaluation results show that our scheme achieved significant improvements in throughput and LTE system capacity. Results also show the improvement in the user satisfaction over other techniques in LTE RRM.
AB - The explosive growth in mobile Internet and related services has increased the need for more bandwidth in cellular networks. The Long-Term Evolution (LTE) technology is an attractive solution for operators and subscribers to meet such need since it provides high data rates and scalable bandwidth. Radio Resource Management (RRM) is essential for LTE to provide better communication quality and meet the application QoS requirements. Cognitive resource management is a promising solution for LTE RRM as it improves network efficiency by exploiting radio environment information, intelligent optimization algorithms to configure transmission parameters, and mitigate interference. In this paper, we propose a cognitive resource management scheme to adapt LTE network parameters to the environment conditions. The scheme optimizes resource blocks assignment, modulation selection and bandwidth selection to maximize throughput and minimize interference. The scheme uses constrained optimization for throughput maximization and interference control. It is also enhanced by learning mechanism to reduce the optimization complexity and improve the decision-making quality. Our evaluation results show that our scheme achieved significant improvements in throughput and LTE system capacity. Results also show the improvement in the user satisfaction over other techniques in LTE RRM.
UR - http://hdl.handle.net/10754/362454
UR - http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6673414
UR - http://www.scopus.com/inward/record.url?scp=84891693560&partnerID=8YFLogxK
U2 - 10.1109/WiMOB.2013.6673414
DO - 10.1109/WiMOB.2013.6673414
M3 - Conference contribution
SN - 9781479904280
SP - 565
EP - 570
BT - 2013 IEEE 9th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)
PB - Institute of Electrical and Electronics Engineers (IEEE)
ER -