Abstract
The fabrication and electromechanical performance of functionalized carbon nanotube (FCNT)-Nafion composite actuators were studied. The CNTs were modified successfully with polyethylene glycol (PEG), as verified by thermogravimetric analysis (TGA) and Fourier transform infrared (FT-IR) spectroscopy. Scanning electron microscopy (SEM) images show that the FCNTs are homogeneously dispersed in the Nafion matrix. The properties of FCNT-Nafion composites in terms of water uptake, ion exchange capacity, proton conductivity, dynamic mechanical properties, and actuation behavior were evaluated. The results show that the sample with 0.5 wt% FCNT exhibits the best overall behavior. Its storage modulus is 2.4 times higher than that of Nafion. In addition, the maximum generated strain and the blocking force for the same sample are 2 and 2.4 times higher compared to the neat Nafion actuator, respectively. © 2011 Elsevier B.V.
Original language | English (US) |
---|---|
Pages (from-to) | 187-193 |
Number of pages | 7 |
Journal | Sensors and Actuators B: Chemical |
Volume | 156 |
Issue number | 1 |
DOIs | |
State | Published - Aug 2011 |
Externally published | Yes |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledged KAUST grant number(s): KUS-C1-018-02
Acknowledgements: The carbon nanotube sample was provided by Tsinghua Univ., China. This work was supported by the Natural Science Foundation of China (NSFC, No. 51063009) and the Beijing Natural Science Foundation of China (No. KZ200910017001). This publication was also based on work supported in part by Award No. KUS-C1-018-02, made by King Abdullah University of Science and Technology (KAUST).
This publication acknowledges KAUST support, but has no KAUST affiliated authors.