Engineering Sodium-Ion Solvation Structure to Stabilize Sodium Anodes: Universal Strategy for Fast-Charging and Safer Sodium-Ion Batteries

Lin Zhou, Zhen Cao, Jiao Zhang, Qujiang Sun, Yingqiang Wu, Wandi Wahyudi, Jang-Yeon Hwang, Limin Wang, Luigi Cavallo, Yang-Kook Sun, Husam N. Alshareef, Jun Ming

Research output: Contribution to journalArticlepeer-review

106 Scopus citations

Abstract

Sodium-ion batteries are promising alternatives for lithium-ion batteries due to their lower cost caused by global sodium availability. However, the low Coulombic efficiency (CE) of the sodium metal plating/stripping process represents a serious issue for the Na anode, which hinders achieving a higher energy density. Herein, we report that the Na+ solvation structure, particularly the type and location of the anions, plays a critical role in determining the Na anode performance. We show that the low CE results from anion-mediated corrosion, which can be tackled readily through tuning the anion interaction at the electrolyte/anode interface. Our strategy thus enables fast-charging Na-ion and Na-S batteries with a remarkable cycle life. The presented insights differ from the prevailing interpretation that the failure mechanism mostly results from sodium dendrite growth and/or solid electrolyte interphase formation. Our anionic model introduces a new guideline for improving the electrolytes for metal-ion batteries with a greater energy density.
Original languageEnglish (US)
Pages (from-to)3247-3254
Number of pages8
JournalNano Letters
Volume20
Issue number5
DOIs
StatePublished - Apr 22 2020

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This work is supported by the National Natural Science Foundation of China (21978281 and 21975250) and the National Key R&D Program of China (SQ2017YFE9128100). The authors also thank the Independent Research Project of the State Key Laboratory of Rare Earth Resources Utilization (110005R086), Changchun Institute of Applied Chemistry, Chinese Academy of Sciences. The research was also partially supported by King Abdullah University of Science and Technology (KAUST) and Hanyang University.

Fingerprint

Dive into the research topics of 'Engineering Sodium-Ion Solvation Structure to Stabilize Sodium Anodes: Universal Strategy for Fast-Charging and Safer Sodium-Ion Batteries'. Together they form a unique fingerprint.

Cite this