Engineering PtRu bimetallic nanoparticles with adjustable alloying degree for methanol electrooxidation: Enhanced catalytic performance

Junming Zhang, Ximing Qu, Yu Han, Linfan Shen, Shuhu Yin, Guang Li, Yanxia Jiang, Shigang Sun

Research output: Contribution to journalArticlepeer-review

140 Scopus citations

Abstract

PtRu bimetal is of particularly attractive in various electrocatalytic reactions owing to its synergistic effect, ligand effect and strain effect. Here, PtRu nanoalloy supported on porous graphitic carbon (PC) has been successfully prepared via a very facile method involving co-reduction the precursors of Pt and Ru at 300 °C by H2 (PtRu/PC[sbnd]L) followed by thermal treatment at high temperature (700 °C, PtRu/PC–H). Specifically, the electrocatalytic performance of PtRu/PC nanoalloy could be dramatically enhanced through high-temperature annealing. This strategy has synthesized smaller Pt and PtRu nanoparticles (ca. < 3 nm); what's more, they are all homogeneous deposited on the surface of PC. PtRu/PC–H nanocatalyst displays higher alloying degree and stronger electronic interaction between Pt and Ru atoms accompanied by the downshift of Pt d-band center. Studies of electrochemical tests indicate that the as-fabricated PtRu/PC–H sample exhibits superior electrocatalytic performance and excellent CO-poisoning tolerance compared with PtRu/PC[sbnd]L and Pt/PC nanocatalysts. The mass activity and specific activity on PtRu/PC–H nanoalloy can be increased to 1674.2 mA mg−1Pt and 4.4 mA cm−2 for MOR, it is 4.08 and 8.80 times higher than that of the Pt/PC nanocatalyst, respectively. From in-situ FTIR spectra, we can discover PtRu/PC–H nanoalloy generates CO2 at a lower potential of −150 mV than those on PtRu/PC–L (0 mV) and Pt/PC (50 mV) nanocatalysts, dramatically improves the ability of cleavage C–H bond and alleviates the COads poisoning on active sites. The PtRu/PC[sbnd]H nanocatalyst exhibits maximum power density of 83.7 mW cm−2 in single methanol fuel cell test, which more than threefold than that of commercial Pt/C as the anode catalyst. Those experimental results open an effective and clean avenue in the development and preparation of high-performance Pt-based nanocatalysts for direct methanol fuel cells.
Original languageEnglish (US)
JournalApplied Catalysis B: Environmental
Volume263
DOIs
StatePublished - Apr 1 2020
Externally publishedYes

Bibliographical note

Generated from Scopus record by KAUST IRTS on 2023-09-21

ASJC Scopus subject areas

  • General Environmental Science
  • Catalysis
  • Process Chemistry and Technology

Fingerprint

Dive into the research topics of 'Engineering PtRu bimetallic nanoparticles with adjustable alloying degree for methanol electrooxidation: Enhanced catalytic performance'. Together they form a unique fingerprint.

Cite this