Engineering Metal-Organic Frameworks with Tunable Colors for High-Performance Wireless Communication

Jian Xin Wang, Yue Wang, Maram Almalki, Jun Yin, Osama Shekhah, Jiangtao Jia, Luis Gutiérrez-Arzaluz, Youdong Cheng, Omar Alkhazragi, Vijay K. Maka, Tien Khee Ng, Osman M. Bakr, Boon S. Ooi*, Mohamed Eddaoudi*, Omar F. Mohammed*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

13 Scopus citations


Metal-organic frameworks (MOFs) have emerged as excellent platforms possessing tunable and controllable optical behaviors that are essential in high-speed and multichannel data transmission in optical wireless communications (OWCs). Here, we demonstrate a novel approach to achieving a tunable wide modulation bandwidth and high net data rate by engineering a combination of organic linkers and metal clusters in MOFs. More specifically, two organic linkers of different emission colors, but equal molecular length and connectivity, are successfully coordinated by zirconium and hafnium oxy-hydroxy clusters to form the desired MOF structures. The precise change in the interactions between these different organic linkers and metal clusters enables control over fluorescence efficiency and excited state lifetime, leading to a tunable modulation bandwidth from 62.1 to 150.0 MHz and a net data rate from 303 to 363 Mb/s. The fabricated color converter MOFs display outstanding performance that competes, and in some instances surpasses, those of conventional materials commonly used in light converter devices. Moreover, these MOFs show high practicality in color-pure wavelength-division multiplexing (WDM), which significantly improved the data transmission link capacity and security by the contemporary combining of two different data signals in the same path. This work highlights the potential of engineered MOFs as a game-changer in OWCs, with significant implications for future high-speed and secure data transmission.

Original languageEnglish (US)
Pages (from-to)15435-15442
Number of pages8
JournalJournal of the American Chemical Society
Issue number28
StatePublished - Jul 19 2023

Bibliographical note

Funding Information:
This work was supported by King Abdullah University of Science and Technology (KAUST). Y.W., O.A., T.K.N., and B.S.O. acknowledge the support from the KAUST (Grant Nos. BAS/1/1614/01/01 and ORA-2022-5313) and the Office of Naval Research Global (Grant No. N62909-19-1-2079).

Publisher Copyright:
© 2023 American Chemical Society.

ASJC Scopus subject areas

  • Catalysis
  • General Chemistry
  • Biochemistry
  • Colloid and Surface Chemistry


Dive into the research topics of 'Engineering Metal-Organic Frameworks with Tunable Colors for High-Performance Wireless Communication'. Together they form a unique fingerprint.

Cite this