Abstract
The development of parallel Computational Fluid Dynamics (CFD) codes is a challenging task that entails efficient parallelization concepts and strategies in order to achieve good scalability values when running those codes on modern supercomputers with several thousands to millions of cores. In this paper, we present a hierarchical data structure for massive parallel computations that supports the coupling of a Navier–Stokes-based fluid flow code with the Boussinesq approximation in order to address complex thermal scenarios for energy-related assessments. The newly designed data structure is specifically designed with the idea of interactive data exploration and visualization during runtime of the simulation code; a major shortcoming of traditional high-performance computing (HPC) simulation codes. We further show and discuss speed-up values obtained on one of Germany’s top-ranked supercomputers with up to 140,000 processes and present simulation results for different engineering-based thermal problems.
Original language | English (US) |
---|---|
Pages (from-to) | 235-261 |
Number of pages | 27 |
Journal | Computation |
Volume | 3 |
Issue number | 2 |
DOIs | |
State | Published - May 22 2015 |
Externally published | Yes |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledged KAUST grant number(s): UK-c0020
Acknowledgements: This publication is partially based on work supported by Award No. UK-c0020, made by KAUST. Furthermore, the authors would like to thank LRZ in Germany for the support and usage of SuperMUC during their ‘Extreme Scaling Workshop’, held in June 2014, and UVT in Romania for the support and usage of their BlueGene/P.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.