TY - JOUR
T1 - Energy versus electron transfer in organic solar cells: A comparison of the photophysics of two indenofluorene: Fullerene blend films
AU - Soon, Ying W.
AU - Clarke, Tracey M.
AU - Zhang, Weimin
AU - Agostinelli, Tiziano
AU - Kirkpatrick, James
AU - Dyer-Smith, Clare
AU - Mcculloch, Iain
AU - Nelson, Jenny
AU - Durrant, James R.
N1 - Generated from Scopus record by KAUST IRTS on 2023-09-21
PY - 2011/6/1
Y1 - 2011/6/1
N2 - In this paper, we compare the photophysics and photovoltaic device performance of two indenofluorene based polymers: poly[2,8-(6,6,12,12-tetraoctylindenofluorene)-co-4′,7′-(2′,1′,3′- benzothiodiazole] (IF8BT) and poly[2,8-(6,6,12,12-tetraoctylindenofluorene)-co-5,5-(40,70-di-2-thienyl-20,10,30-benzothiodiazole] (IF8TBTT) blended with [6,6]-phenyl C61 butyric acid methyl ester (PCBM). Photovoltaic devices made with IF8TBTT exhibit greatly superior photocurrent generation and photovoltaic efficiency compared to those made with IF8BT. The poor device efficiency of IF8BT/ PCBM devices is shown to result from efficient, ultrafast singlet Förster energy transfer from IF8BT to PCBM, with the resultant PCBM singlet exciton lacking sufficient energy to drive charge photogeneration. The higher photocurrent generation observed for IF8TBTT/PCBM devices is shown to result from IF8TBTT's relatively weak, red-shifted photoluminescence characteristics, which switches off the polymer to fullerene singlet energy transfer pathway. As a consequence, IF8TBTT singlet excitons are able to drive charge separation at the polymer/fullerene interface, resulting in efficient photocurrent generation. These results are discussed in terms of the impact of donor/acceptor energy transfer upon photophysics and energetics of charge photogeneration in organic photovoltaic devices. The relevance of these results to the design of polymers for organic photovoltaic applications is also discussed, particularly with regard to explaining why highly luminescent polymers developed for organic light emitting diode applications often give relatively poor performance in organic photovoltaic devices. © The Royal Society of Chemistry 2011.
AB - In this paper, we compare the photophysics and photovoltaic device performance of two indenofluorene based polymers: poly[2,8-(6,6,12,12-tetraoctylindenofluorene)-co-4′,7′-(2′,1′,3′- benzothiodiazole] (IF8BT) and poly[2,8-(6,6,12,12-tetraoctylindenofluorene)-co-5,5-(40,70-di-2-thienyl-20,10,30-benzothiodiazole] (IF8TBTT) blended with [6,6]-phenyl C61 butyric acid methyl ester (PCBM). Photovoltaic devices made with IF8TBTT exhibit greatly superior photocurrent generation and photovoltaic efficiency compared to those made with IF8BT. The poor device efficiency of IF8BT/ PCBM devices is shown to result from efficient, ultrafast singlet Förster energy transfer from IF8BT to PCBM, with the resultant PCBM singlet exciton lacking sufficient energy to drive charge photogeneration. The higher photocurrent generation observed for IF8TBTT/PCBM devices is shown to result from IF8TBTT's relatively weak, red-shifted photoluminescence characteristics, which switches off the polymer to fullerene singlet energy transfer pathway. As a consequence, IF8TBTT singlet excitons are able to drive charge separation at the polymer/fullerene interface, resulting in efficient photocurrent generation. These results are discussed in terms of the impact of donor/acceptor energy transfer upon photophysics and energetics of charge photogeneration in organic photovoltaic devices. The relevance of these results to the design of polymers for organic photovoltaic applications is also discussed, particularly with regard to explaining why highly luminescent polymers developed for organic light emitting diode applications often give relatively poor performance in organic photovoltaic devices. © The Royal Society of Chemistry 2011.
UR - http://xlink.rsc.org/?DOI=C0SC00606H
UR - http://www.scopus.com/inward/record.url?scp=79957826676&partnerID=8YFLogxK
U2 - 10.1039/c0sc00606h
DO - 10.1039/c0sc00606h
M3 - Article
SN - 2041-6520
VL - 2
SP - 1111
EP - 1120
JO - Chemical Science
JF - Chemical Science
IS - 6
ER -