Abstract
As the first material ever used in a solid-state solar cell, selenium (Se) has outstanding merits of light absorption, carrier mobility, intrinsic environmental stability, and straightforward film preparation, making it an attractive light-absorbing semiconductor for photovoltaic applications. However, the exploration of selenium for photoelectrochemical (PEC) cells remains vastly unreported. Here, we successfully enable selenium as an absorber in the photocathode for solar hydrogen production. A rapid thermal annealing process is adopted to prepare a tetragonal Se film with a preferred [100] orientation. Using a thin layer of TiO2buffer and platinum decoration, a photocurrent density up to −7.2 mA/cm2is achieved over the optimal Se/TiO2/Pt photocathode at 0 VRHEunder simulated one sun illumination. The roles of surface state passivation by TiO2and cocatalyst decoration by Pt in charge separation and transfer were thoroughly investigated by capacitance-voltage profiling, photoassisted Kelvin probe force microscopy, photoelectrochemical impedance spectroscopy, and also transient photovoltage decay. Our work provides Se as a promising candidate for solar hydrogen production and also highlights the effectiveness of surface state passivation and cocatalyst decoration in the fabrication of efficient PEC devices.
Original language | English (US) |
---|---|
Pages (from-to) | 9923-9931 |
Number of pages | 9 |
Journal | ACS Sustainable Chemistry and Engineering |
Volume | 9 |
Issue number | 29 |
DOIs | |
State | Published - Jul 26 2021 |
Externally published | Yes |
Bibliographical note
Generated from Scopus record by KAUST IRTS on 2023-09-21ASJC Scopus subject areas
- Renewable Energy, Sustainability and the Environment
- Environmental Chemistry
- General Chemical Engineering
- General Chemistry