TY - GEN
T1 - Electronic structure of metal/organic and organic/organic interfaces
AU - Bredas, Jean Luc
PY - 2008
Y1 - 2008
N2 - Conjugated organic materials are being increasingly incorporated in devices such as solar cells. In the operation of such devices, electron-transfer processes play a key role. Also, there is high current interest in the characterization of self-assembled monolayers (SAMs) on the surfaces of noble metal or (transparent) conducting oxides such as ITO. In order to tune the interface properties and to endow the self-assembled systems with functionality suitable for use in either macroscopic or nanoscale devices, the use of pi-conjugated molecules is promising. The first part of this presentation focuses on a theoretical description of charge-separation phenomena at organic-organic interfaces. Our approach is based on electron-transfer theory, which provides a molecular, chemically-oriented understanding. The second part deals with a theoretical description of the electronic structure of the interface between metallic or conducting oxide substrates and covalently-bound organic semiconductors. Of interest is the modification of the substrate workfunction upon SAM formation.
AB - Conjugated organic materials are being increasingly incorporated in devices such as solar cells. In the operation of such devices, electron-transfer processes play a key role. Also, there is high current interest in the characterization of self-assembled monolayers (SAMs) on the surfaces of noble metal or (transparent) conducting oxides such as ITO. In order to tune the interface properties and to endow the self-assembled systems with functionality suitable for use in either macroscopic or nanoscale devices, the use of pi-conjugated molecules is promising. The first part of this presentation focuses on a theoretical description of charge-separation phenomena at organic-organic interfaces. Our approach is based on electron-transfer theory, which provides a molecular, chemically-oriented understanding. The second part deals with a theoretical description of the electronic structure of the interface between metallic or conducting oxide substrates and covalently-bound organic semiconductors. Of interest is the modification of the substrate workfunction upon SAM formation.
UR - http://www.scopus.com/inward/record.url?scp=84858623763&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84858623763
SN - 9780841269859
T3 - ACS National Meeting Book of Abstracts
BT - American Chemical Society - 235th National Meeting, Abstracts of Scientific Papers
T2 - 235th National Meeting of the American Chemical Society, ACS 2008
Y2 - 6 April 2008 through 10 April 2008
ER -