Electron Acceptor Materials Engineering in Colloidal Quantum Dot Solar Cells

Huan Liu, Jiang Tang, Illan J. Kramer, Ratan Debnath, Ghada I. Koleilat, Xihua Wang, Armin Fisher, Rui Li, Lukasz Brzozowski, Larissa Levina, Edward H. Sargent

Research output: Contribution to journalArticlepeer-review

146 Scopus citations


Lead sulfide colloidal quantum dot (CQD) solar cells with a solar power conversion efficiency of 5.6% are reported. The result is achieved through careful optimization of the titanium dioxide electrode that serves as the electron acceptor. Metal-ion-doped sol-gel-derived titanium dioxide electrodes produce a tunable-bandedge, well-passivated materials platform for CQD solar cell optimization. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Original languageEnglish (US)
Pages (from-to)n/a-n/a
Number of pages1
JournalAdvanced Materials
Issue number33
StatePublished - Jul 15 2011
Externally publishedYes

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): KUS-11-009-21
Acknowledgements: This publication is based in part on work supported by Award No. KUS-11-009-21, made by King Abdullah University of Science and Technology (KAUST), by the Ontario Research Fund Research Excellence Program, and by the Natural Sciences and Engineering Research Council (NSERC) of Canada. The authors thank Angstrom Engineering and Innovative Technology for useful discussions regarding material deposition methods and control of glovebox environment, respectively. We would also like to acknowledge the technical assistance and scientific guidance of E. Palmiano, R. Wolowiec and D. Kopilovic. H. Liu would like to acknowledge the scholarship from China Scholarship Council (CSC). R. Debnath and I. J. Kramer acknowledge the financial support through e8/MITACS Elevate Strategic Fellowship and the Queen Elizabeth II/Ricoh Canada Graduate Scholarship in Science and Technology, respectively.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.


Dive into the research topics of 'Electron Acceptor Materials Engineering in Colloidal Quantum Dot Solar Cells'. Together they form a unique fingerprint.

Cite this